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Definition

Given a polygon, a diagonal is a line segment between two non-

adjacent vertices of the polygon which does not intersect the polygon
(except at the vertices).
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a, b visible/can see each other

a, ¢ not visible diagonal
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Definition

A triangulation of a polygon is a partition of the interior of the
polygon into triangles using a set of non-intersecting diagonals.




Goal

Given a polygon P: triangulate it, i.e. output a set of diagonals that

partition the polygon into triangles.

not unique




Why triangulation?
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Partitioning into simpler shapes: technique for dealing
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Triangulating a polygon is a simpler 2D version of the

more general meshing problem.




Does a triangulation always exist?

YES.

We can show the following:

- Theorem 1: Any simple polygon must have a convex vertex (angle <180).
- Theorem 2: Any simple polygon with n>3 vertices contains (at least) a diagonal.
- Theorem 3: Any polygon can be triangulated by adding diagonals.

. Theorem 4: Any triangulation of a polygon of n vertices has n — 2 triangles and

n — 3 diagonals.

- Theorem 5: Any simple polygon has at least two ears.



Theorem 1: Any simple polygon contains at least one convex vertex

T

the angle is <180

pick the lowest vertex of the polygon



Theorem 2: Any simple polygon contains at least one diagonal.

this is a diagonal \
a

the first vertex
k hit by a horizontal line
7 moving up from v
this is a diagonal e parallel to ab



Theorem 3: Any polygon can be triangulated by adding diagonals

—




Polygon triangulation Algorithm 1: Naive

/[ P is a polygon given as a vector of points (in ccw order along boundary)

|dea: Find a diagonal, use it to partition P, recurse on the resulting polygons




// return True if vertices a, b of P form a diagonall
isDiagonal(a, b, P)

intersection at vertices is ok for the edges
adjacenttoaand b




etit=(G{==m-1))?0

/[ input: a, b are points in P, let n be the size of P
/[ return true if (a,b) is diagonal
bool isDiagonal(a, b, P):
e fori=0; i< n; i++
//[Check edge (p;, p;+)
o if (p;==a)OR (p; == b): continue
o if (p;+ == a) OR (p;+ = = b): continue
. if intersect(a, b, p;, p;+): return False
//if we got here, we know that ab intersects no edge.
/[the only thing left to check is whether it's inside or outside P

e return true if inside P, false if outside P

i+ 1



-+ S0 ab does not intersect any edges. Is ab interior or exterior?

-

not a diagonal diagonal

ab outside cone a”,a,a”* ab is inside the cone formed by a~, a,a™



//return True if ab is in the cone determined by a ", a,a™

bool InCone(a, b):




//return True if ab is in the cone determined by a ", a,a™

bool InCone(a, b):

In this case a~ and a™ must

be one on each side

>at

In this case a~ and a™* may
be both to the left of ab, or
'both to the right, or one on
) each side

_  But:ataa is convex, and

d ab is internal to a"aa™ if it

Is not internal to the convex
ataa”



/[return True if ab is in the cone determined by a ™, a, at
bool InCone(a, b, P)

e a4 = point before a

+ _ .
e a' = point after a Note: strict Left() to exclude
ab collinear overlap with the cone

RN

. if LeftOn(a™,a,a™): return Left(a, b, a™) && Left(b, a,a™)

. return I( LeftOn(b,a,a™) and LeftOn(a, b,a™) )



Putting it all together: Is ab a diagonal?

//input: a, b are points in P
//return true if (a,b) is diagonal
bool isDiagonal(a,b, P):

e fori=0; i< n; i++

/[Checking edge (P;s Pit1y%n)
eletit=>G(==m-1)20:i+1
O(n) o if (p;==a)OR (p, == b): continue
o it (Pis1ymod n == @ OR (P(it1ymoa n = = b): continue
o if intersect(a, b, p;, P(iy1)%n): return False
/[if we got here, we know that ab intersects no edge.

//[The only thing left to check is whether it's inside or outside P

O(1) e returninCone(a, b, P) ardirSenela;R}  /lonly one necessary

==> Can check if an edge(a,b) is a diagonal of P in O(n) time



More efficient

//input: a, b are points in P
/[return true if (a,b) is diagonal
bool isDiagonal(a,b, P):
O(1) « if I(inCone(a, b, P)-anarConetb-a-P)) : return false m

e fori=0; i< n;i++
eletit=((==m-1)20:i+1
o if (p;==a)OR (p; == b): continue
O(n) . . — = }) -
o if (p(i+1)m0dn = =q) OR (p(i+1)m0dn = = b): continue
. if intersect(a, b, p;, Pi4 1)) return False .

e return true //if we got here, we know that ab intersects no edge



So we know how to check if a segment is a diagonal, but how to find a
diagonal?

Straightforward way to find a diagonal:
e fori=0, i<n, i++
e forj=i+1, j<n, j++ 0(n3)

. check if p;p;is diagonal

We can use this to triangulate



Naive triangulation by recursively finding diagonals

e Algorithm 1: Triangulation by finding diagonals

» |dea: Check all pairs of vertices to find one which is a diagonal, partition the
polygon and recurse.

e Analysis:

» checking all vertices: O(n2) candidates for diagonals, checking each
takes O(n), overall O(n3)

e recurse, worst case on a problem of size n-1

e overall O(n4)

e Algorithm 2: Triangulation by smartly finding diagonals
« A diagonal can be found in O(n) time (using the proof that a diagonal exists)
* |dea: Find a diagonal, output it, recurse.
e O(n2)



Algorithm 3: Triangulation by finding ears

A bat-eared fox peeks from the grass in Hwange National Park, Zimbabwe.
PHOTOGRAPH BY ROY TOFT, NAT GEO IMAGE COLLECTION



Definition

A vertex p of a polygon is called ear ifp‘pJr IS a diagonal




Theorem: Any simple polygon has at least two ears.




Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P.




Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P. Consider the dual graph.




Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P. Consider the dual graph. The dual graphis a

tree. Any tree has at least two leaves. A leaf => ear



Algorithm 3: Triangulation by finding ears

e raverse P and for each vertex p, determine if it's an ear

e \When find a ear p: remove it and recurse on the remaining P




Algorithm 3: Triangulation by finding ears om)

/

O(n) e Traverse P and for each vertex p, determine if it's an ear

e \When find a ear p: remove it and recurse on the remaining P

T(n-1) +O(n2) => O(n3)




Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time




Algorithm 4: Improved ear removal
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* When you remove an ear tip from the polygon, which vertices
might change their ear status?

E
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Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

and so on



Algorithm 4: Improved ear removal

 Initialize the ear tip status of each vertex of P
e while n>3 do:

e locate aneartipp

. output diagonal p~p*

» delete p

. update ear tip status of p~ and p*

Or, with a bit more detalil,



Algorithm 4: Improved ear removal

- fori=0, i<n, i++

. plil is ear if isDiagonal(p " p™*)

- while n>3 do:
- i=0
- while i < P.size():
- if p[i] is labeled as ear:
. output diagonal p[i — 1]p[i + 1]
. update ear status for p[i — 1] and p[i + 1]
- delete p[i] from P and set n =n-1

- else: 1++



Algorithm 4: Improved ear removal

- fori=0, i<n, i++

] O(n2)

. plil is ear if isDiagonal(p ~p™)

- while n>3 do:
- i=0
- while i < P.size():
- if p[i] is labeled as ear:
. output diagonal p[i — 1]p[i + 1]
. update ear status for p[i — 1] and p[i + 1] +— this takes O(n)
- delete p[i] from P and set n =n-1

a vertex causes ear status updates
- else: i++ for 2 other vertices

==> O(n) ear status updates

Overall: O(n2) time



History of Polygon Triangulation

Early algorithms: O(n4), O(n3), O(n2)
Several O(n Ig n) algorithms known < prac’[ica|

Many papers with improved bounds «

not practical

1991: Bernard Chazelle (Princeton) gave an O(n) algorithm <———
 https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf
 Ridiculously complicated, not practical

* O(1) people actually understand it (seriously) (and I'm not one of them)

No algorithm is known that is practical enough to run faster than the O( n Ig n) algorithms

Still an open problem : A practical algorithm that’s theoretically better than O(n Ig n).



