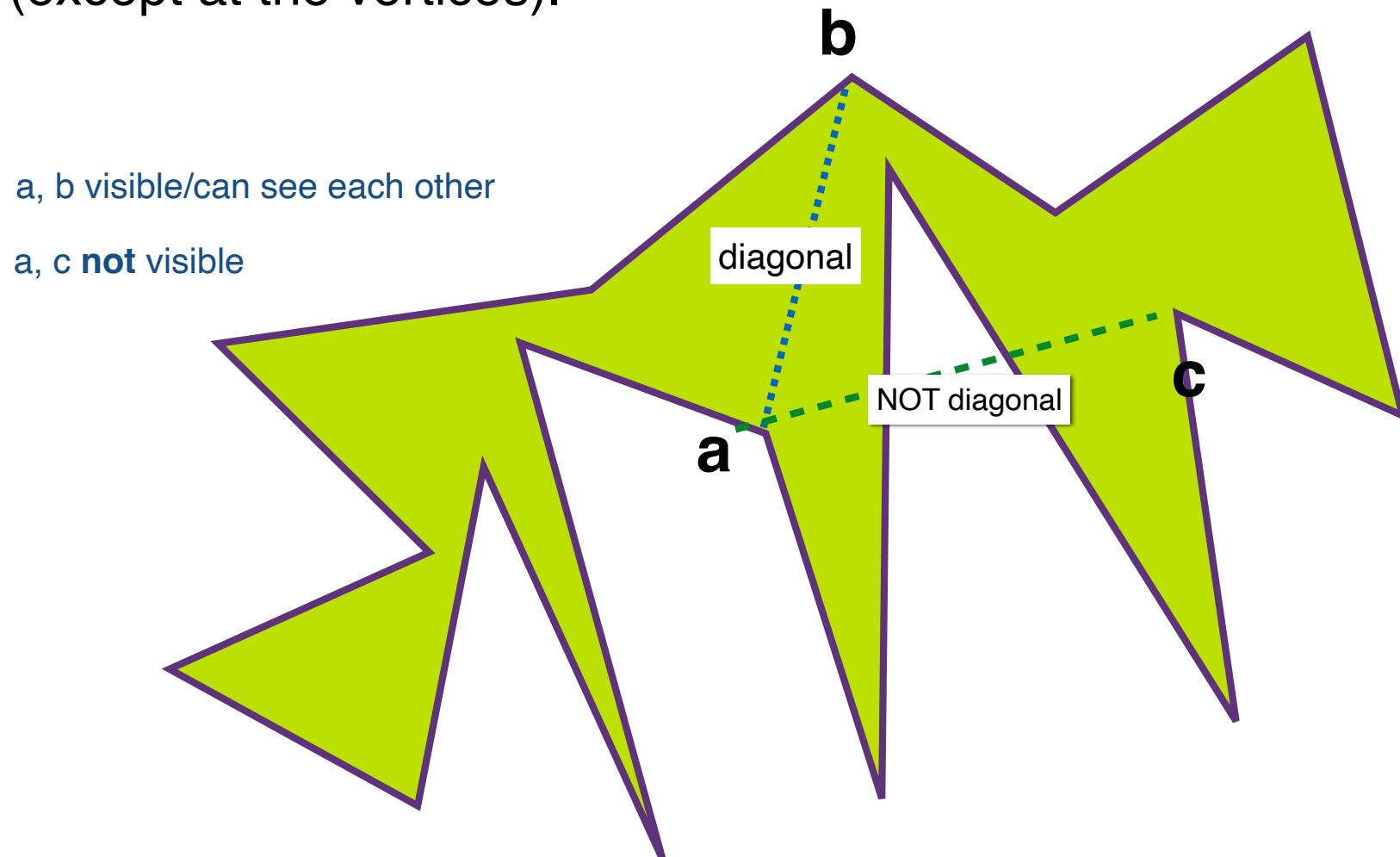


Polygon Triangulation

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

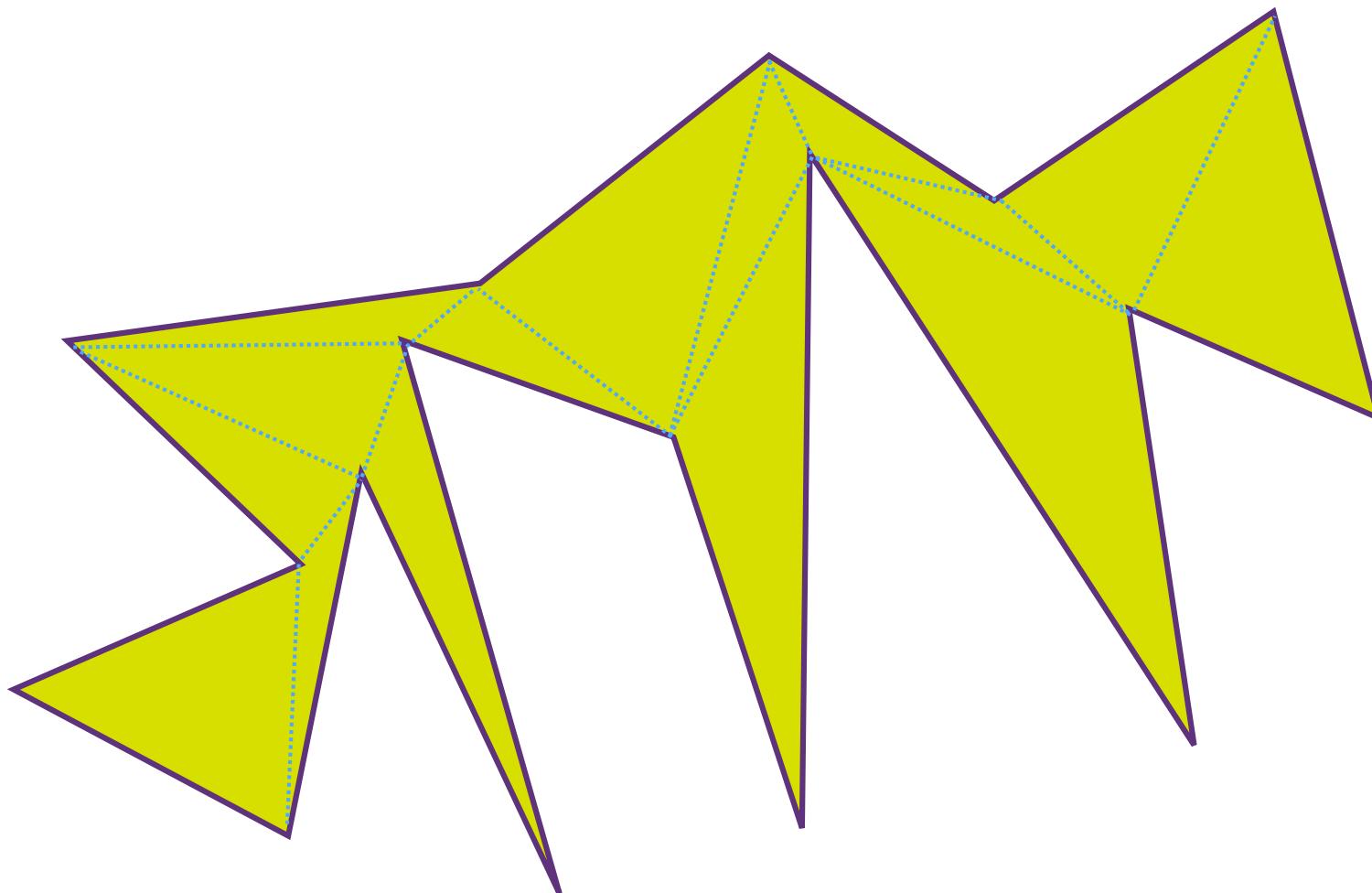
Definition

Given a polygon, a **diagonal** is a line segment between two non-adjacent vertices of the polygon which does not intersect the polygon (except at the vertices).



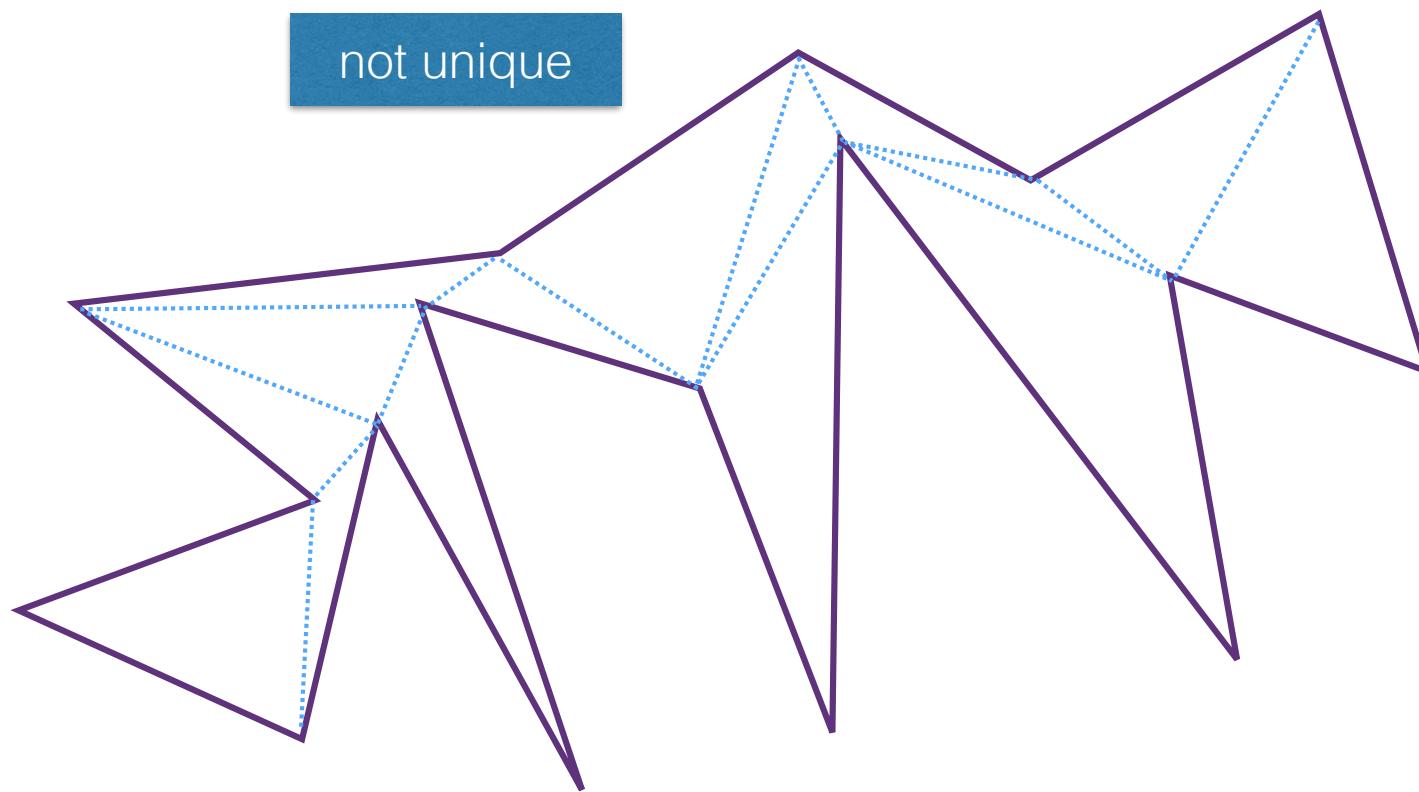
Definition

A **triangulation** of a polygon is a partition of the interior of the polygon into triangles using a set of non-intersecting **diagonals**.



Goal

Given a polygon P : triangulate it, i.e. output a set of diagonals that partition the polygon into triangles.

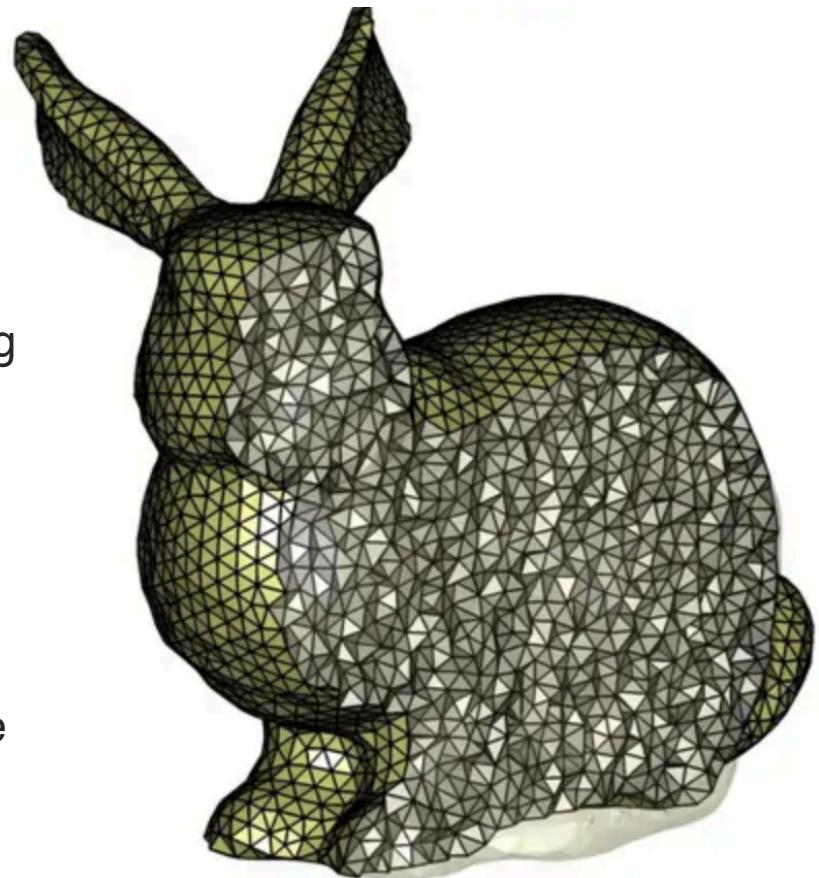
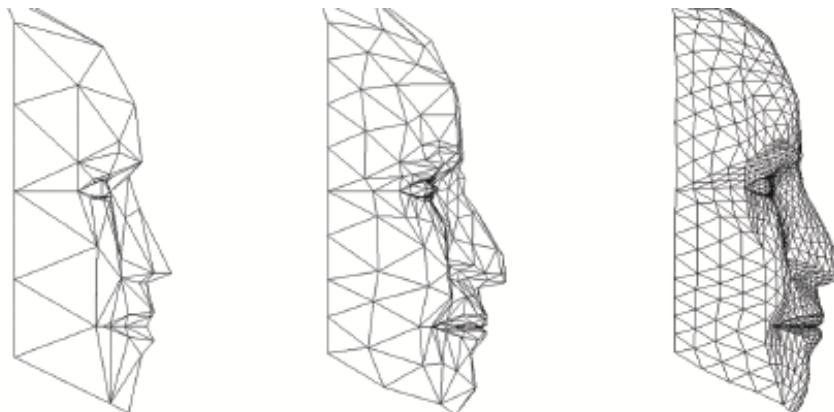
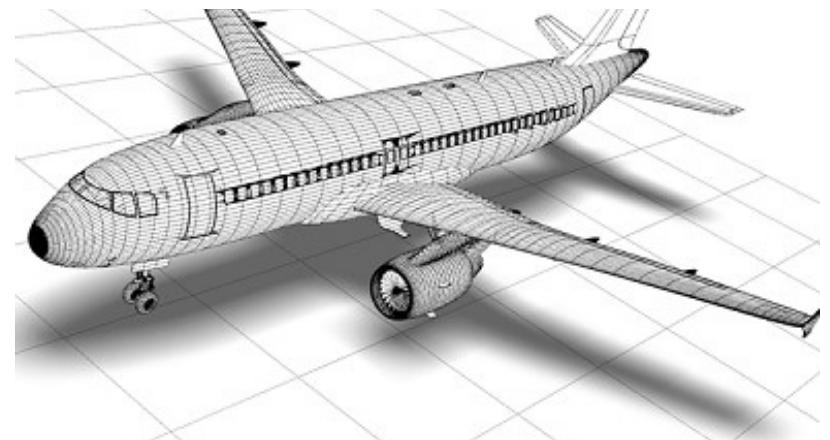


Why triangulation?

Partitioning into simpler shapes: technique for dealing with complexity

In 3D this is known as “meshing”

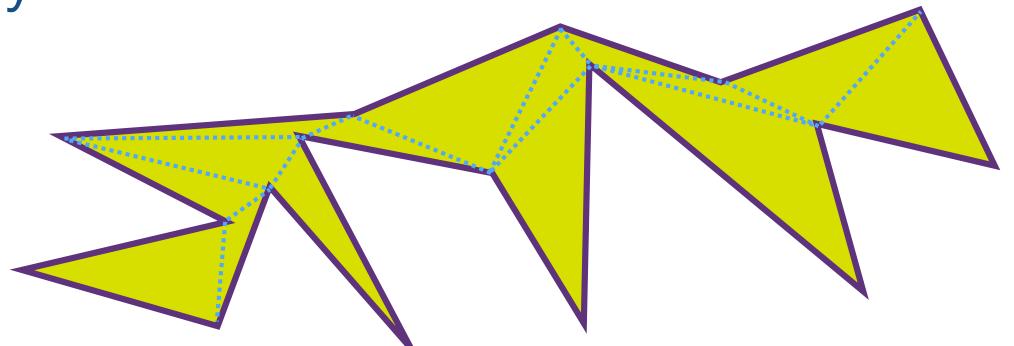
Triangulating a polygon is a simpler 2D version of the more general meshing problem.



Does a triangulation always exist?

YES.

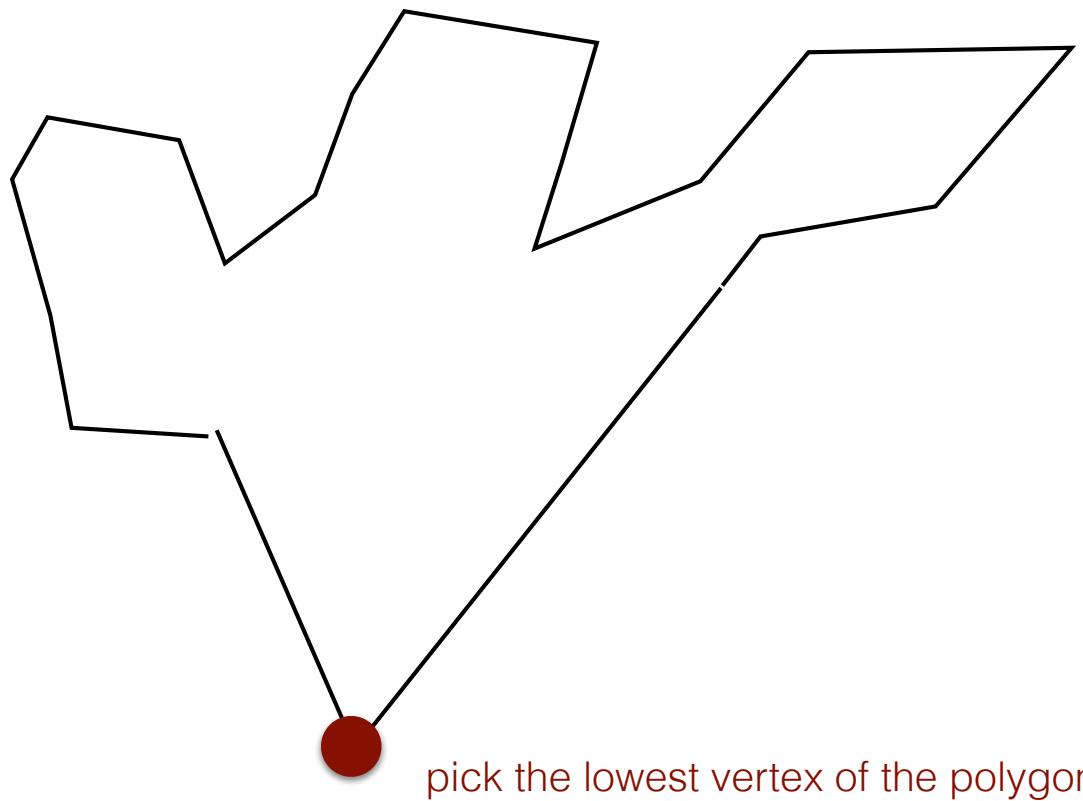
We can show the following:



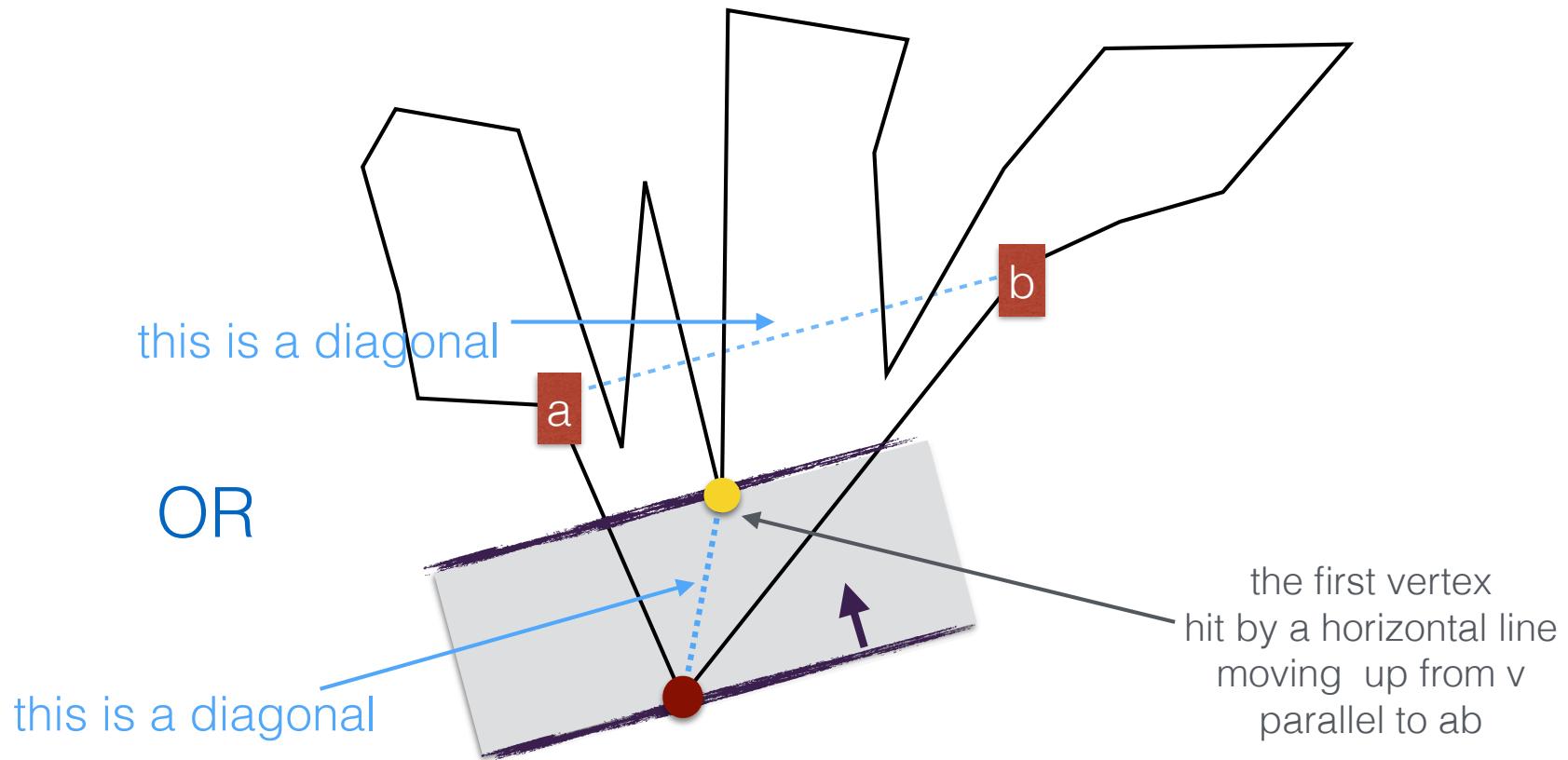
- Theorem 1: Any simple polygon must have a convex vertex (angle < 180).
- Theorem 2: Any simple polygon with $n > 3$ vertices contains (at least) a diagonal.
- Theorem 3: Any polygon can be triangulated by adding diagonals.
- Theorem 4: Any triangulation of a polygon of n vertices has $n - 2$ triangles and $n - 3$ diagonals.
- Theorem 5: Any simple polygon has at least two ears.

Theorem 1: Any simple polygon contains at least one **convex** vertex

↑
the angle is < 180



Theorem 2: Any simple polygon contains at least one diagonal.



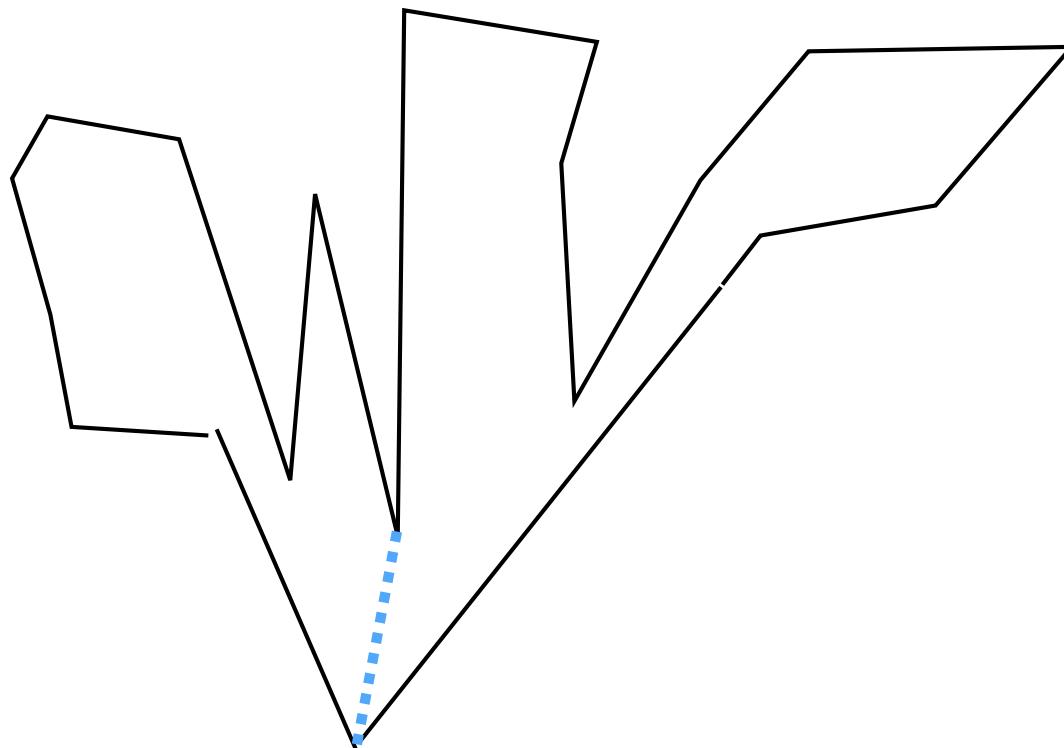
Theorem 3: Any polygon can be triangulated by adding diagonals

Proof: By induction on the size of the polygon

if $n=3$, holds trivially

Assume it holds for any $k < n$.

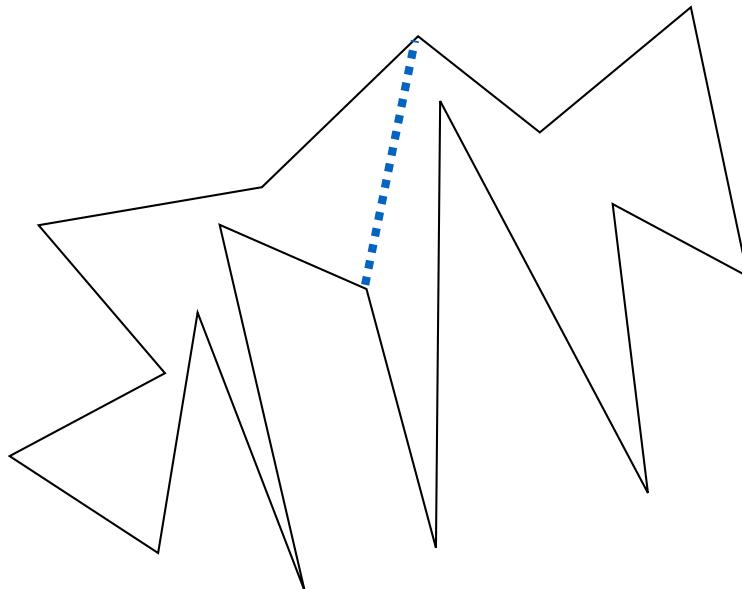
A diagonal must exist. It partitions P into two polygons, each one has $< n$ vertices, and can be triangulated by ind. hyp.



Polygon triangulation Algorithm 1: Naive

// P is a polygon given as a vector of points (in ccw order along boundary)

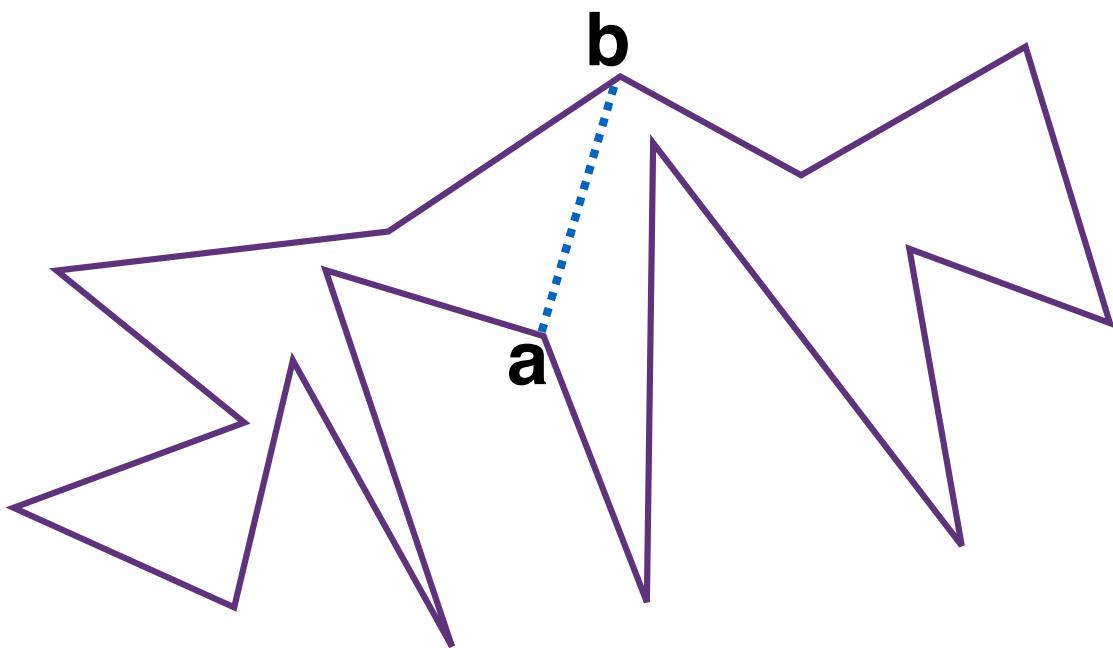
Idea: Find a diagonal, use it to partition P, recurse on the resulting polygons



// return True if vertices a, b of P form a diagonal

isDiagonal(a, b, P)

intersection at vertices is ok for the edges
adjacent to a and b



```
let  $i^+ = (i == (n - 1)) ? 0 : i + 1$ 
```

```
// input: a, b are points in P, let n be the size of P
```

```
// return true if (a,b) is diagonal
```

```
bool isDiagonal(a, b, P):
```

- for $i=0; i < n; i++$

```
//Check edge  $(p_i, p_{i^+})$ 
```

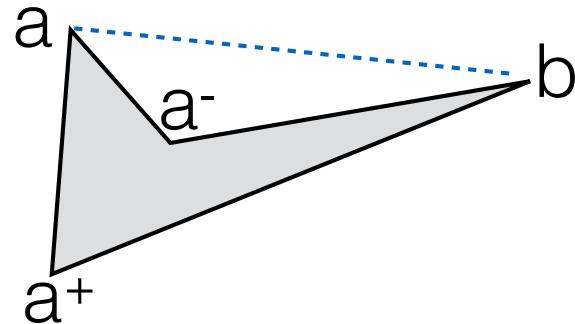
- if $(p_i == a) \text{ OR } (p_i == b)$: continue
- if $(p_{i^+} == a) \text{ OR } (p_{i^+} == b)$: continue
- if $\text{intersect}(a, b, p_i, p_{i^+})$: return False

```
//if we got here, we know that ab intersects no edge.
```

```
//the only thing left to check is whether it's inside or outside P
```

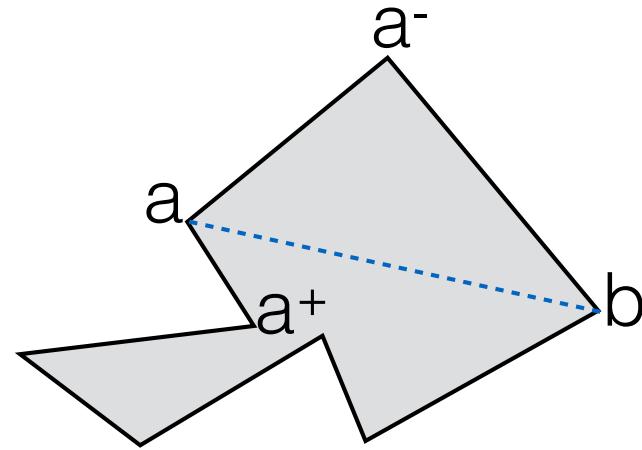
- return true if inside P, false if outside P

- So ab does not intersect any edges. Is ab interior or exterior?



not a diagonal

ab outside cone a^-, a, a^+

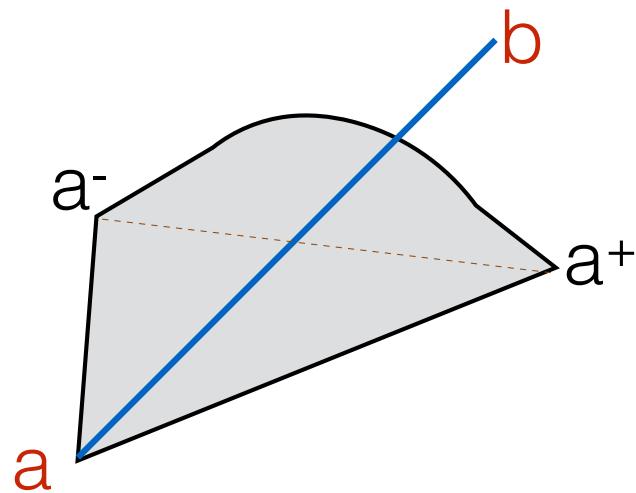


diagonal

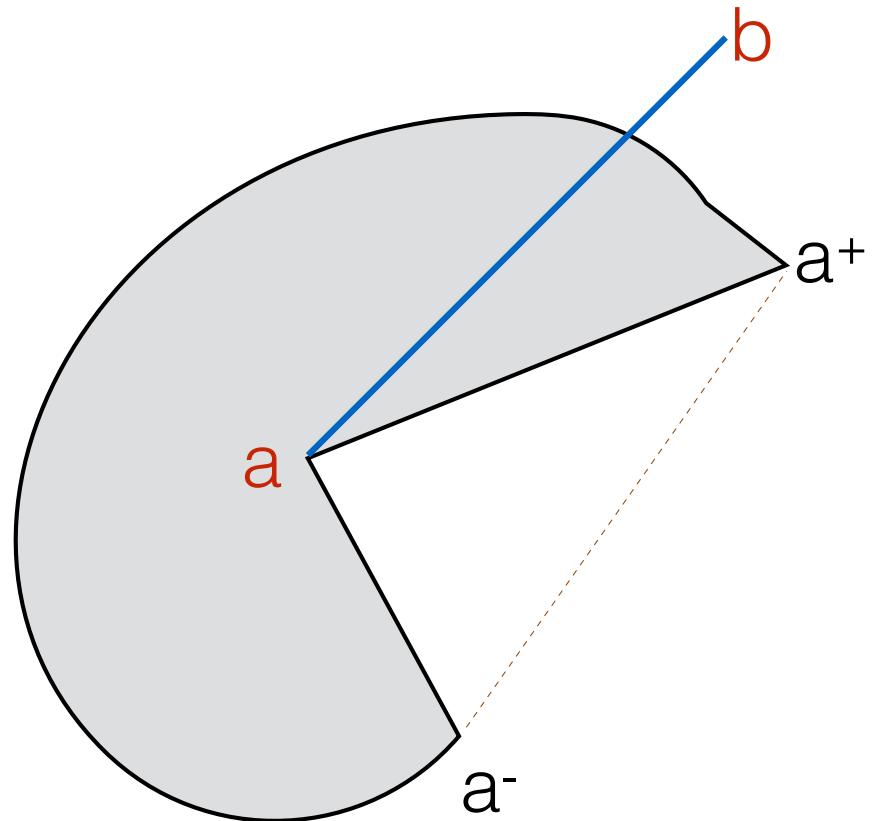
ab is inside the cone formed by a^-, a, a^+

//return True if ab is in the cone determined by a^- , a , a^+

bool InCone(a, b):



True

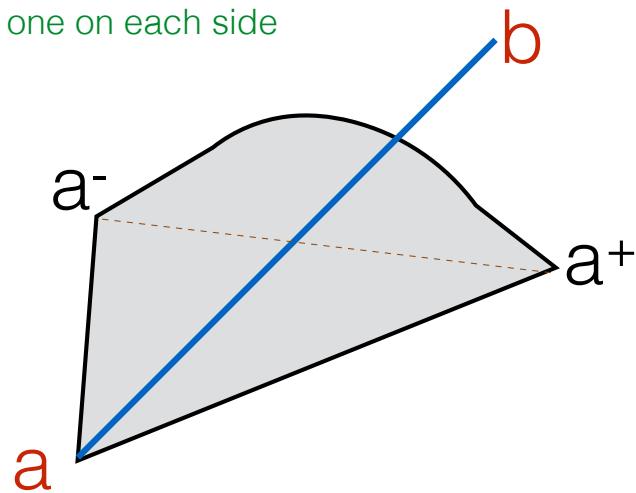


True

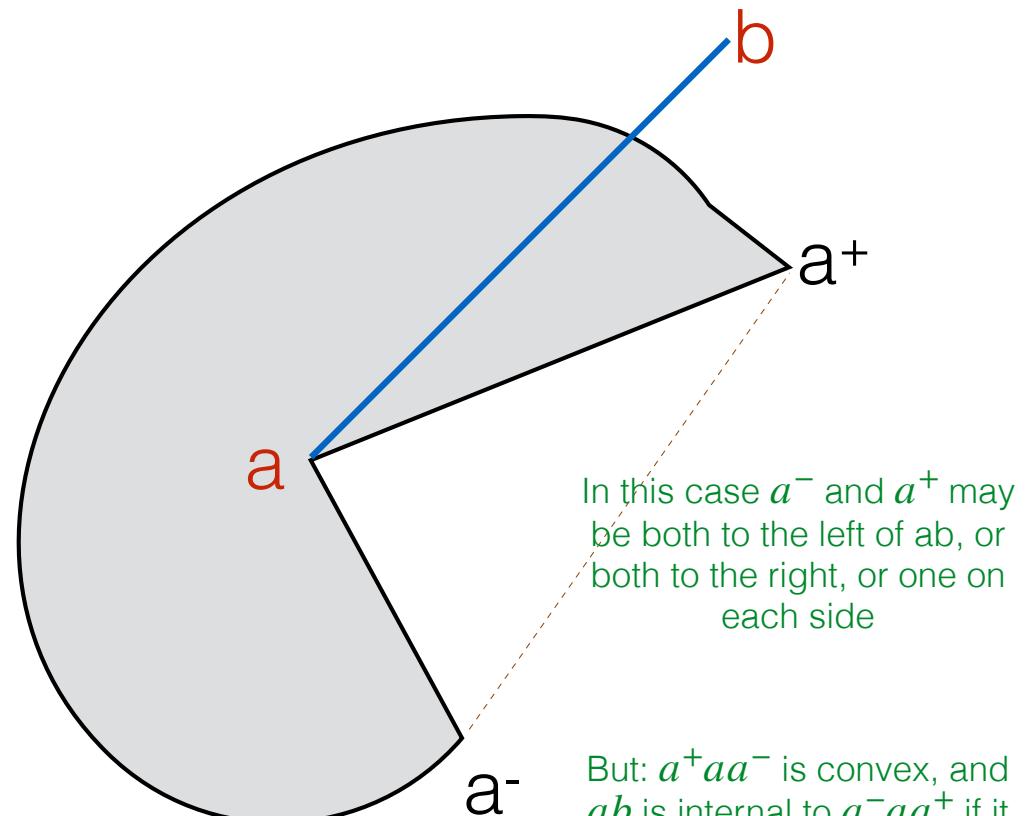
//return True if ab is in the cone determined by a^- , a , a^+

bool InCone(a, b):

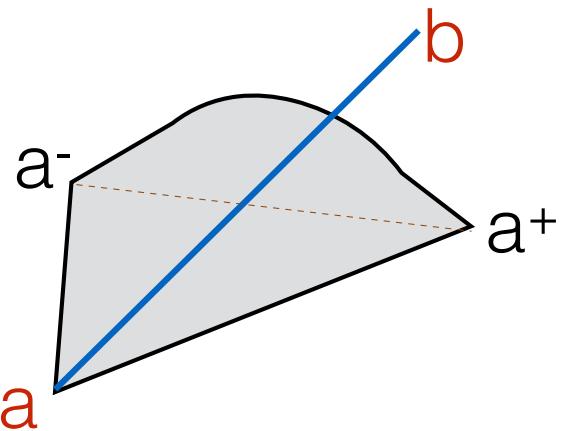
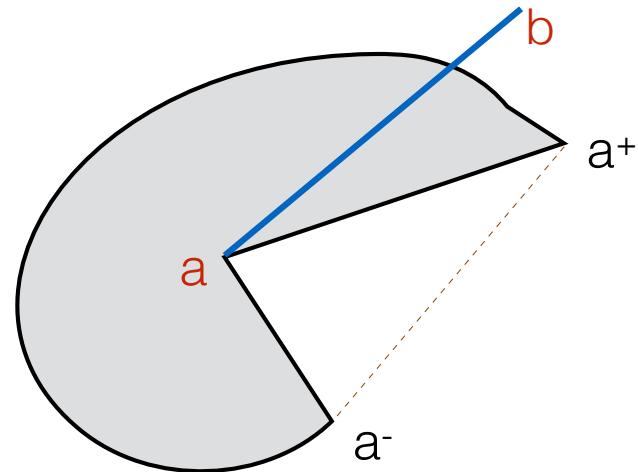
In this case a^- and a^+ must be one on each side



In this case a^- and a^+ may be both to the left of ab, or both to the right, or one on each side



But: a^+aa^- is convex, and ab is internal to a^-aa^+ if it is not internal to the convex a^+aa^-



//return True if ab is in the cone determined by a^-, a, a^+

bool **InCone**(a, b, P)

- a^- = point before a
- a^+ = point after a

Note: strict Left() to exclude
ab collinear overlap with the cone

//if a is convex vertex

- if $\text{LeftOn}(a^-, a, a^+)$: return $\text{Left}(a, b, a^-) \&\& \text{Left}(b, a, a^+)$

//else a is reflex vertex

- return $!(\text{LeftOn}(b, a, a^-) \text{ and } \text{LeftOn}(a, b, a^+))$

Putting it all together: Is ab a diagonal?

```
//input: a, b are points in P
```

```
//return true if (a,b) is diagonal
```

```
bool isDiagonal(a,b, P):
```

- for $i=0$; $i < n$; $i++$

```
//Checking edge  $(p_i, p_{(i+1)\%n})$ 
```

- let $i^+ = (i == (n - 1)) ? 0 : i + 1$
- if $(p_i == a)$ OR $(p_i == b)$: continue
- if $(p_{(i+1)\%n} == a)$ OR $(p_{(i+1)\%n} == b)$: continue
- if $\text{intersect}(a, b, p_i, p_{(i+1)\%n})$: return False

```
//if we got here, we know that ab intersects no edge.
```

```
//The only thing left to check is whether it's inside or outside P
```

O(1) • return $\text{inCone}(a, b, P)$ and $\text{inCone}(b, a, P)$ //only one necessary

\Rightarrow Can check if an edge (a, b) is a diagonal of P in $O(n)$ time

More efficient

```
//input: a, b are points in P
```

```
//return true if (a,b) is diagonal
```

```
bool isDiagonal(a,b, P):
```

$O(1)$ • if ~~!(inCone(a, b, P) and inCone(b,a,P))~~ : return false

← check this first

- for $i=0; i < n; i++$
 - let $i^+ = (i == (n - 1)) ? 0 : i + 1$

- if $(p_i == a) \text{ OR } (p_i == b)$: continue

$O(n)$

- if $(p_{(i+1)mod\ n} == a) \text{ OR } (p_{(i+1)mod\ n} == b)$: continue
 - if $\text{intersect}(a, b, p_i, p_{(i+1)\%n})$: return False .

- return true //if we got here, we know that ab intersects no edge

So we know how to check if a segment is a diagonal, but how to find a diagonal?

Straightforward way to find a diagonal:

- for $i=0, i < n, i++$
 - for $j=i+1, j < n, j++$
 - check if $p_i p_j$ is diagonal

$O(n^3)$

We can use this to triangulate

Naive triangulation by recursively finding diagonals

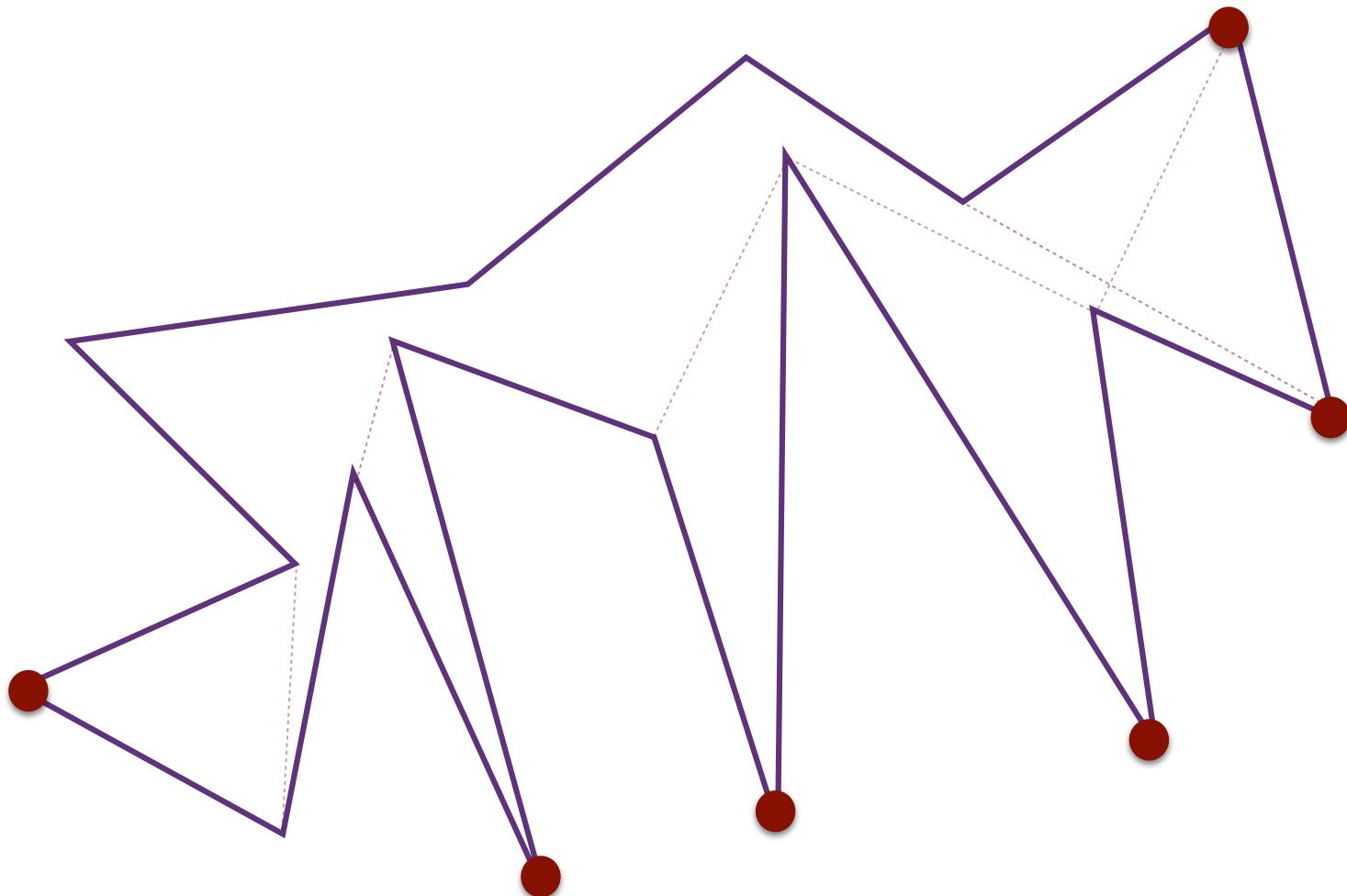
- **Algorithm 1:** Triangulation by finding diagonals
 - Idea: Check all pairs of vertices to find one which is a diagonal, partition the polygon and recurse.
 - Analysis:
 - checking all vertices: $O(n^2)$ candidates for diagonals, checking each takes $O(n)$, overall $O(n^3)$
 - recurse, worst case on a problem of size $n-1$
 - overall $O(n^4)$
- **Algorithm 2:** Triangulation by *smartly* finding diagonals
 - A diagonal can be found in $O(n)$ time (using the proof that a diagonal exists)
 - Idea: Find a diagonal, output it, recurse.
 - $O(n^2)$

Algorithm 3: Triangulation by finding ears

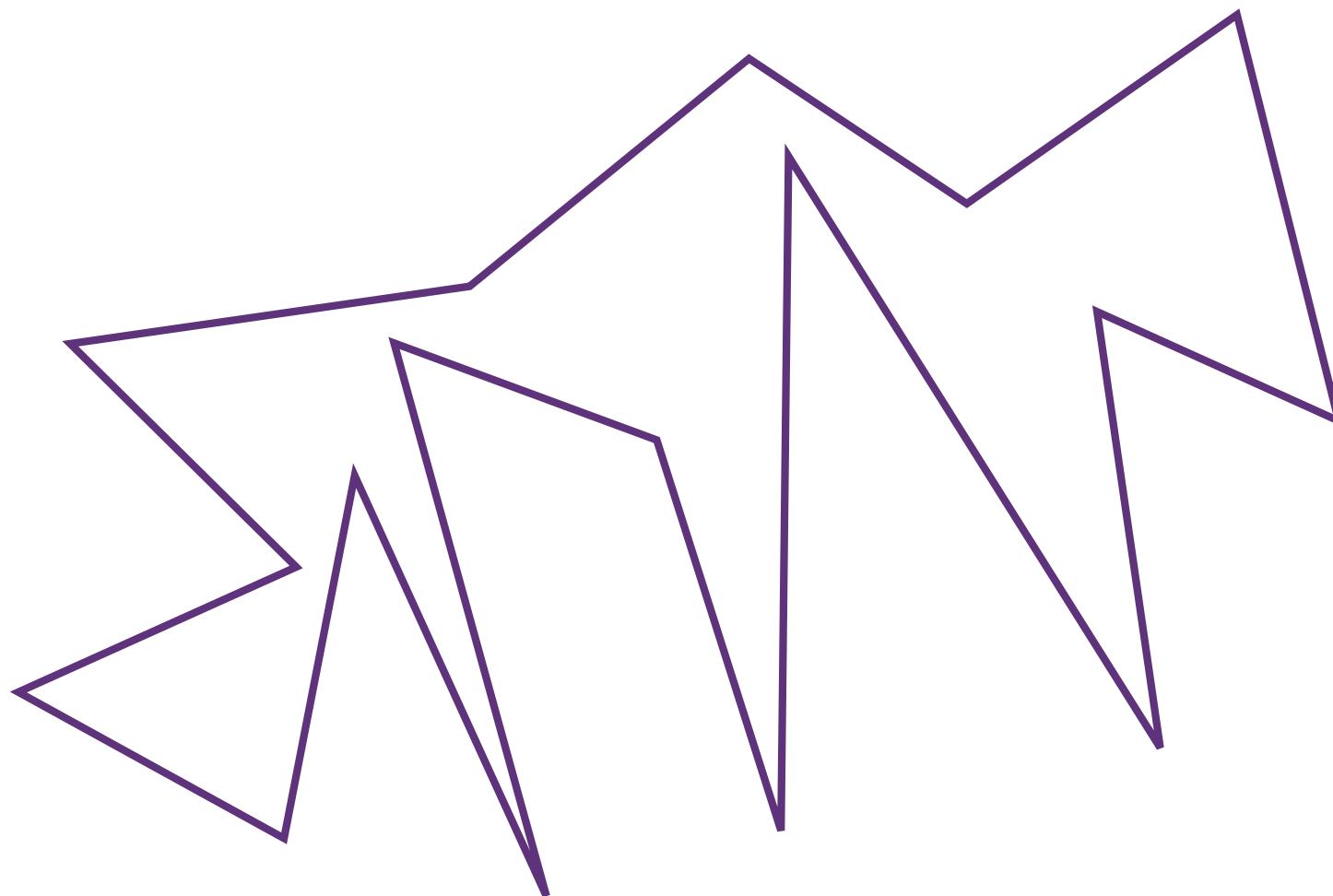
A bat-eared fox peeks from the grass in Hwange National Park, Zimbabwe.
PHOTOGRAPH BY ROY TOFT, NAT GEO IMAGE COLLECTION

Definition

A vertex p of a polygon is called **ear** if p^-p^+ is a diagonal

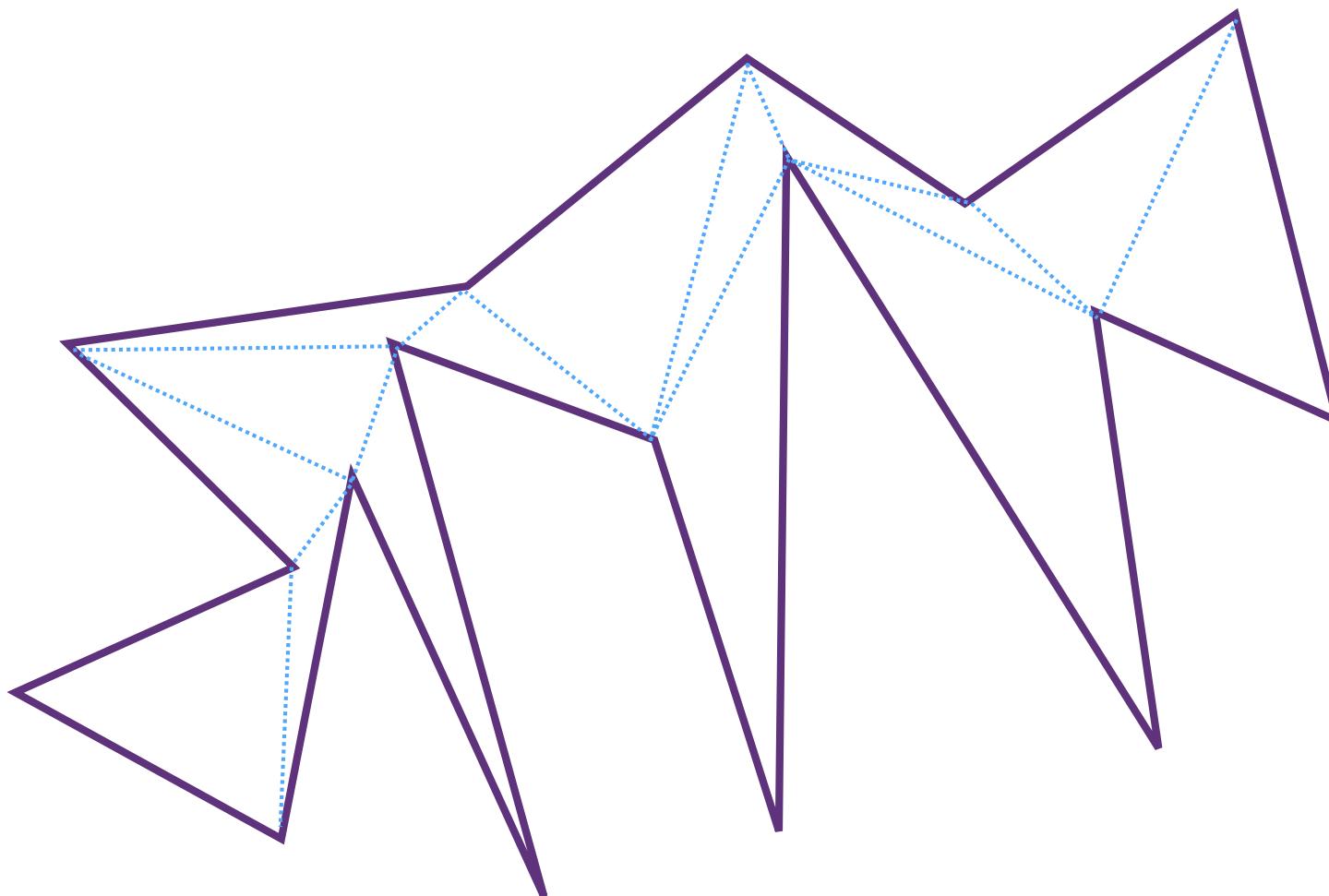


Theorem: Any simple polygon has at least two ears.



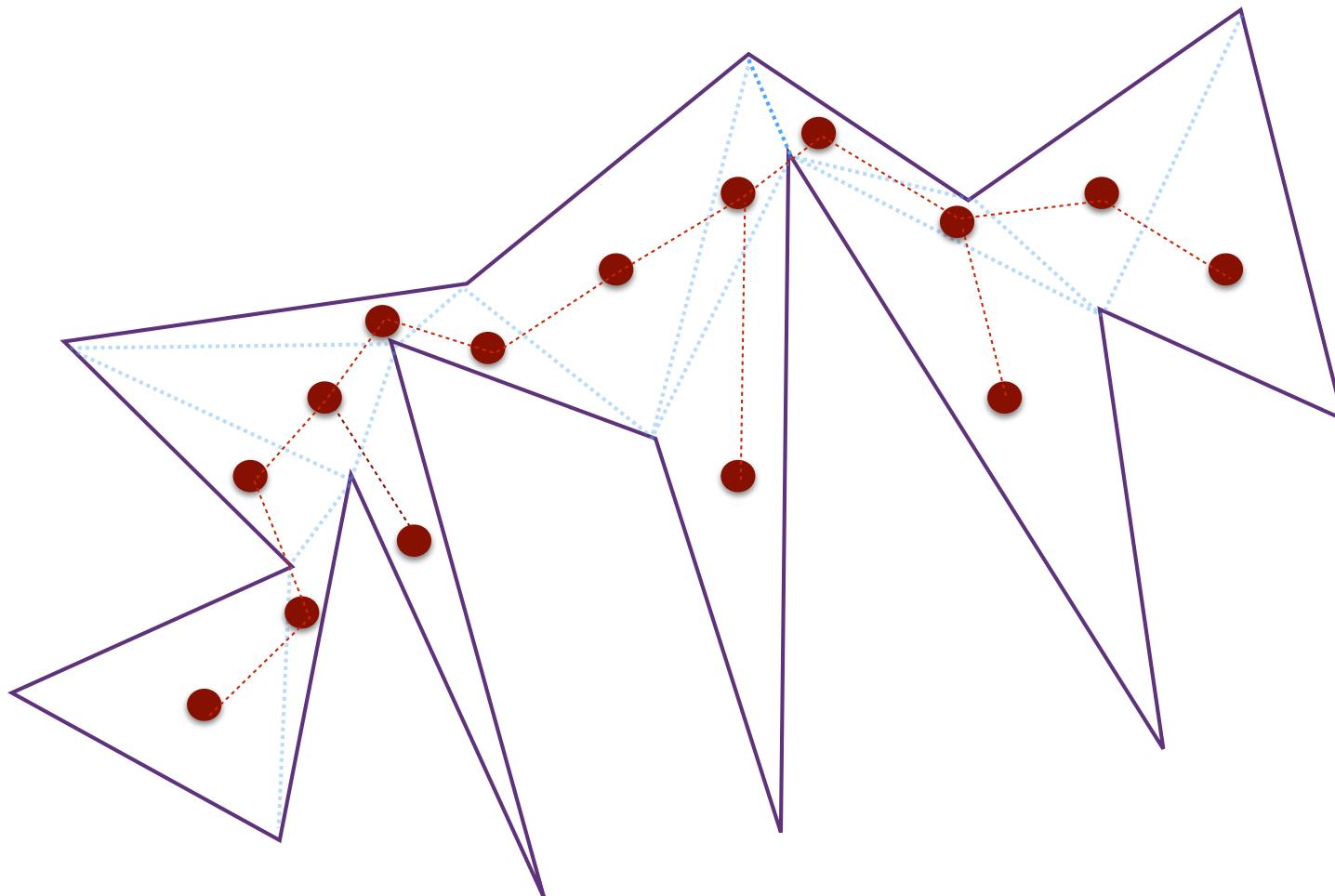
Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P.



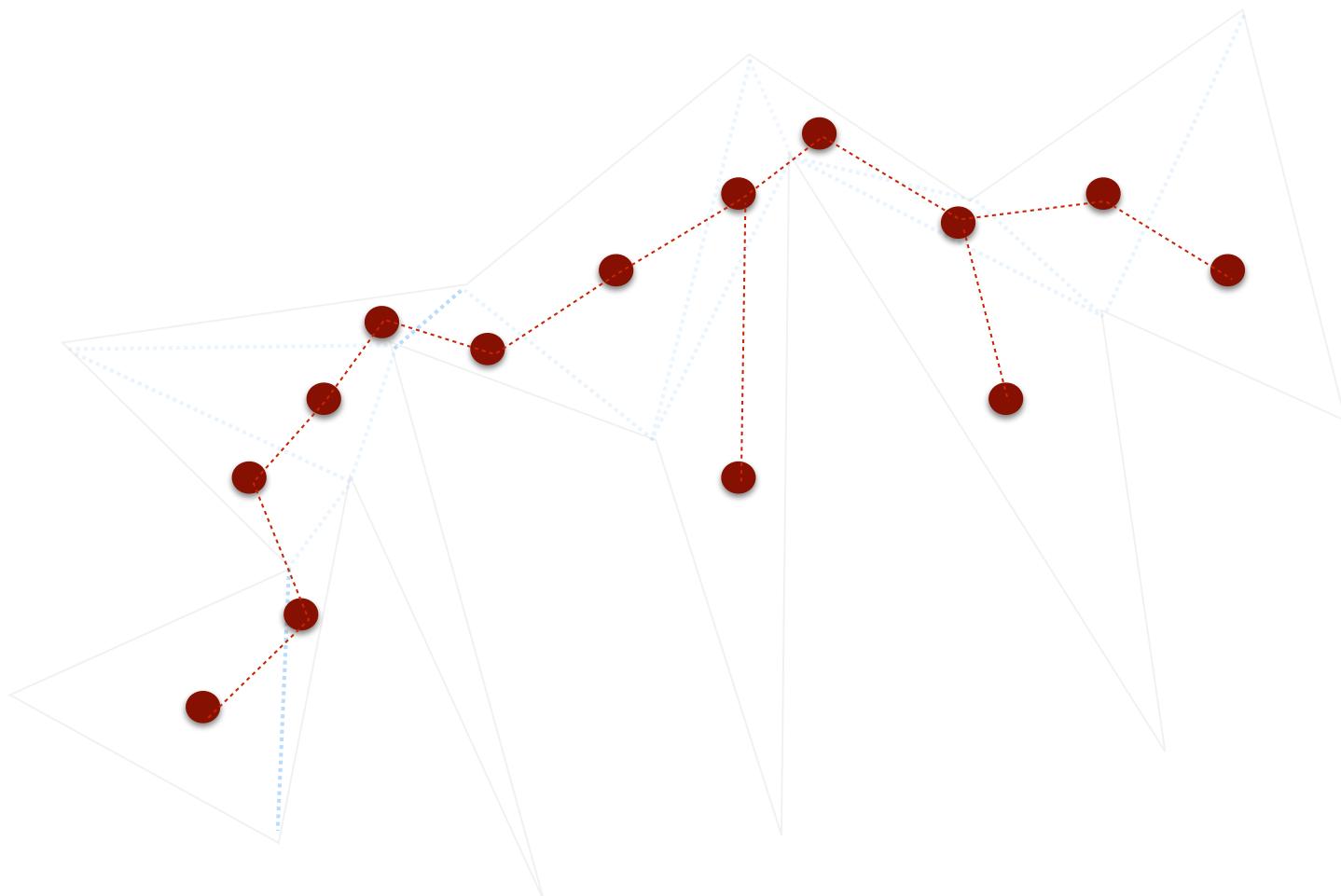
Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P . Consider the dual graph.



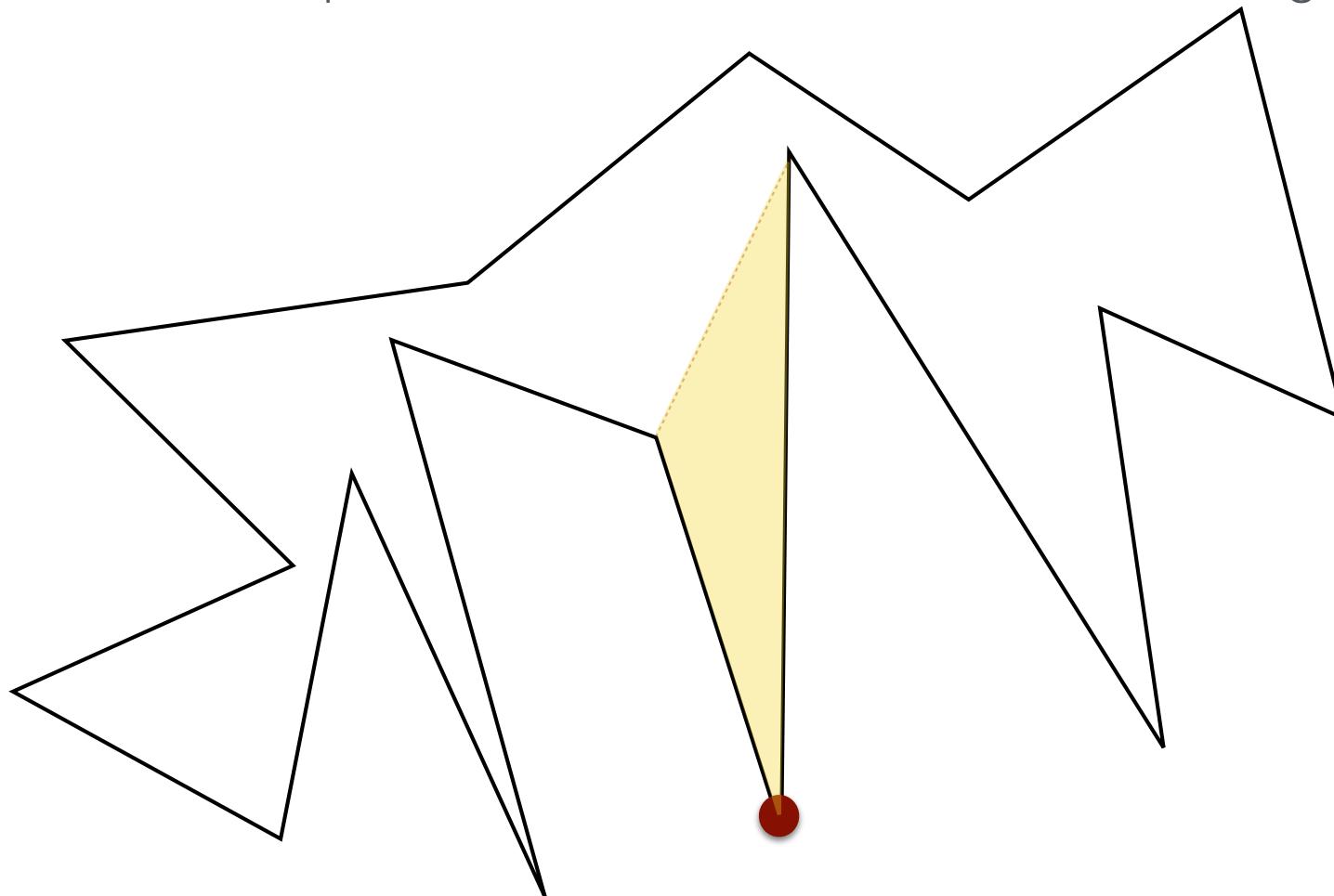
Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P. Consider the dual graph. The dual graph is a tree. Any tree has at least two leaves. A leaf \Rightarrow ear



Algorithm 3: Triangulation by finding ears

- Traverse P and for each vertex p , determine if it's an ear
- When find a ear p : remove it and recurse on the remaining P



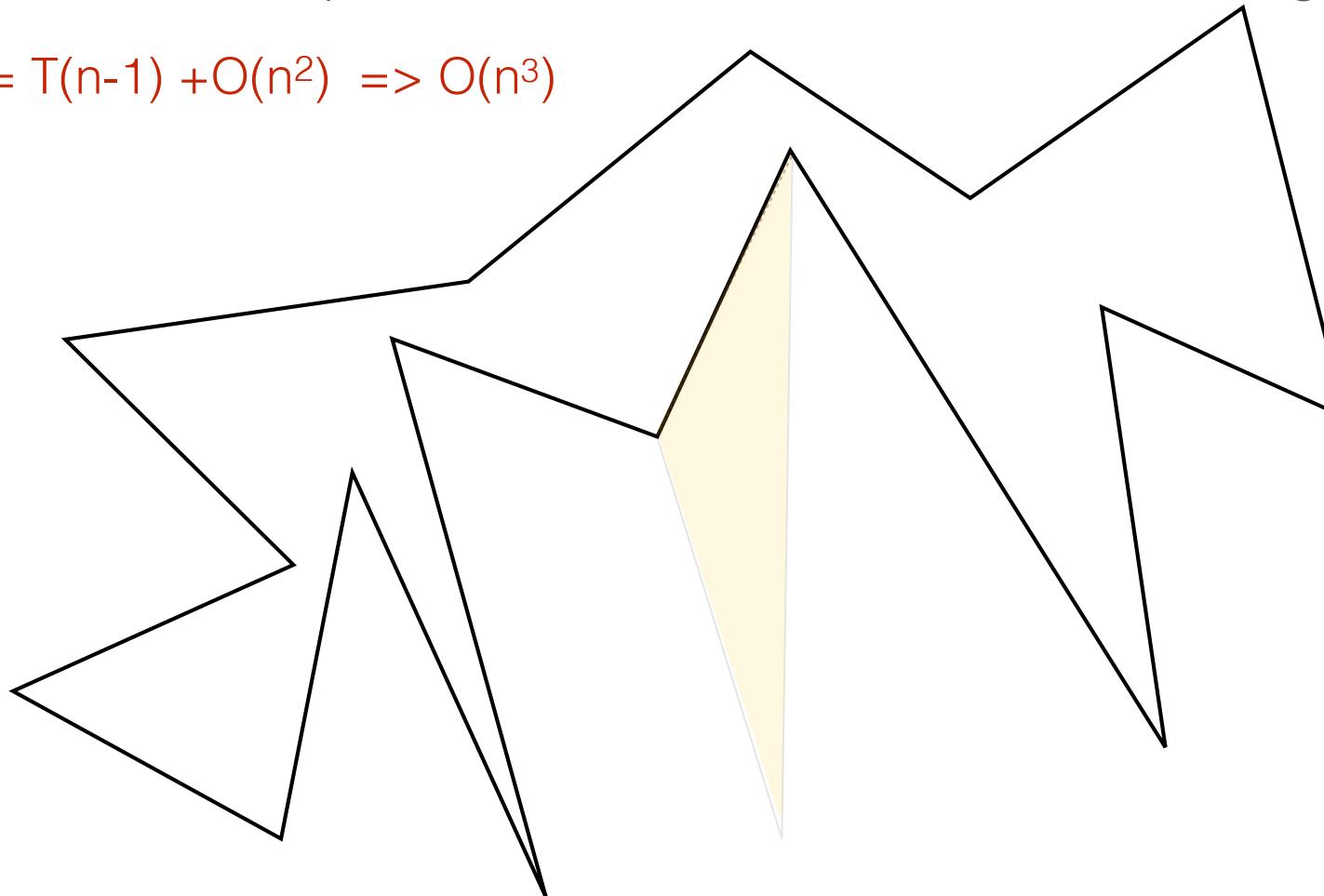
Algorithm 3: Triangulation by finding ears

$O(n)$

$O(n)$

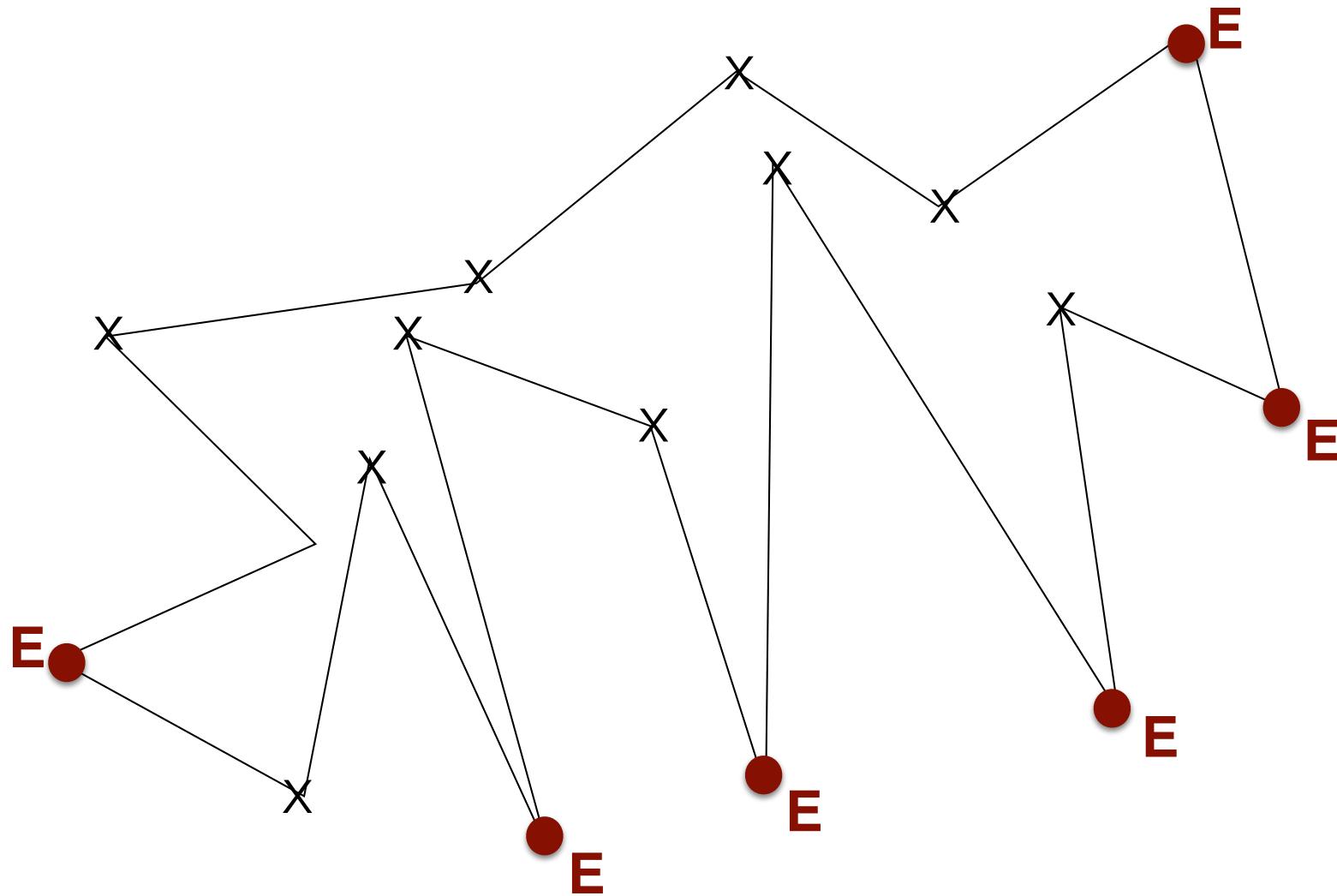
- Traverse P and for each vertex p , determine if it's an ear
- When find a ear p : remove it and recurse on the remaining P

$$T(n) = T(n-1) + O(n^2) \Rightarrow O(n^3)$$



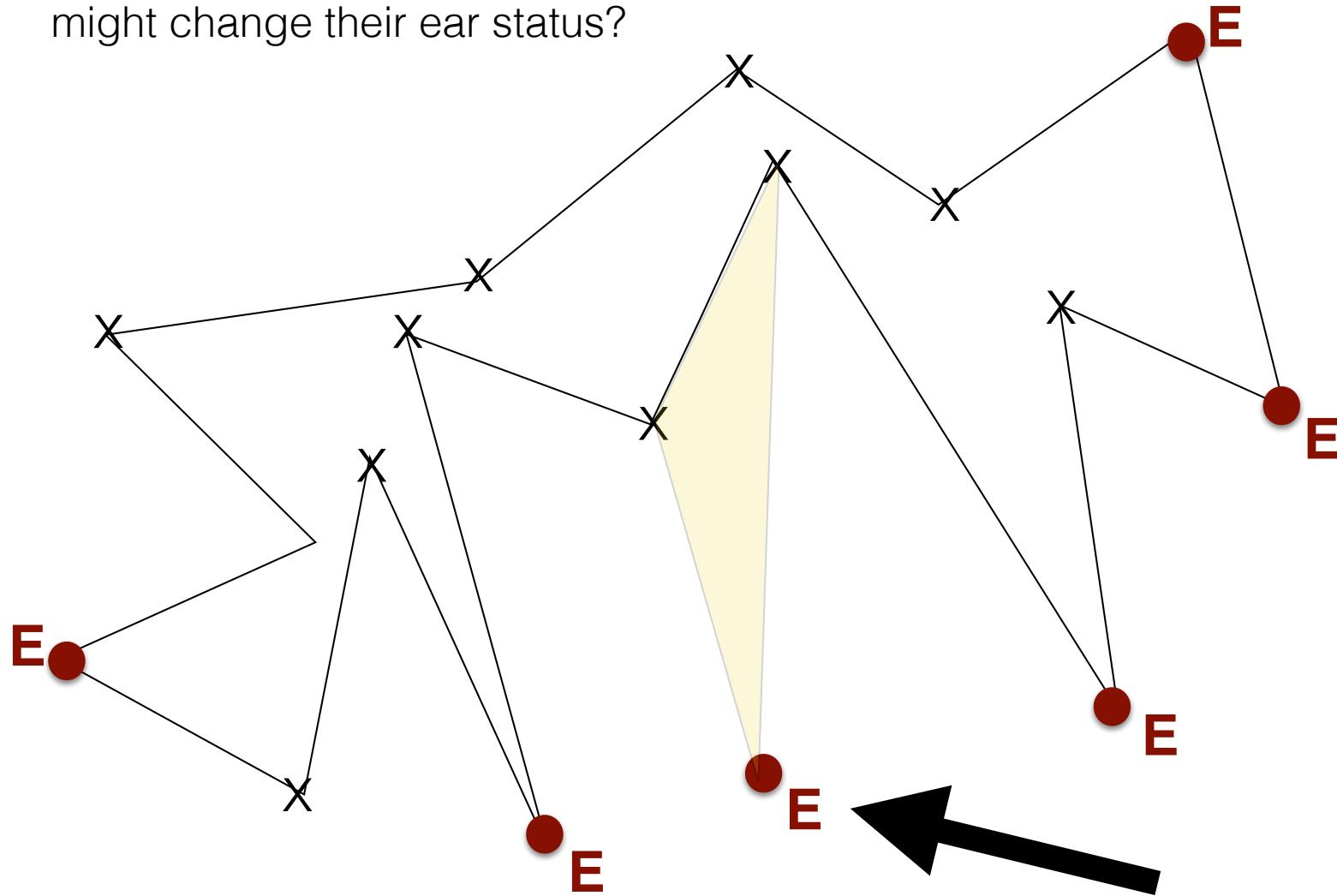
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time



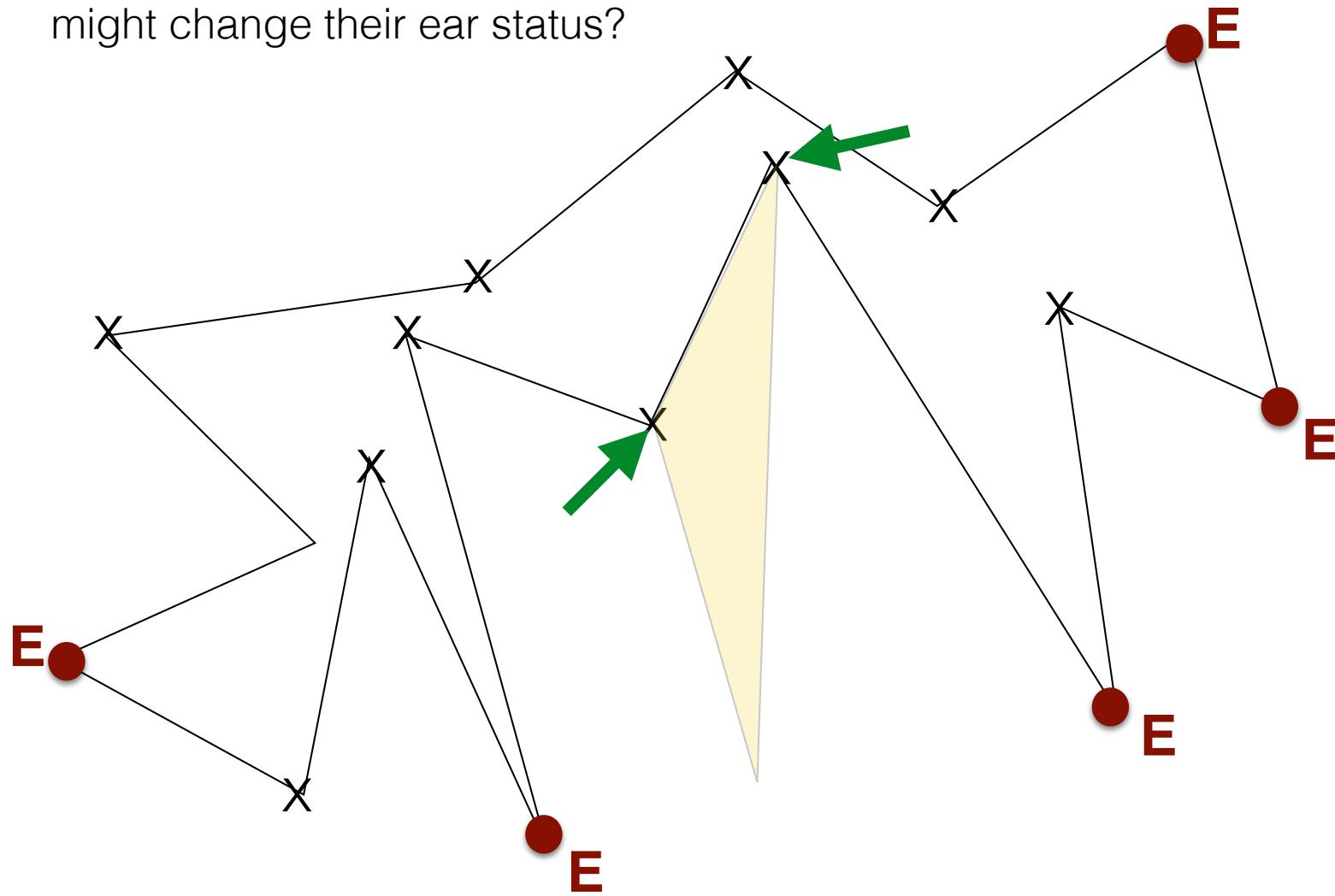
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



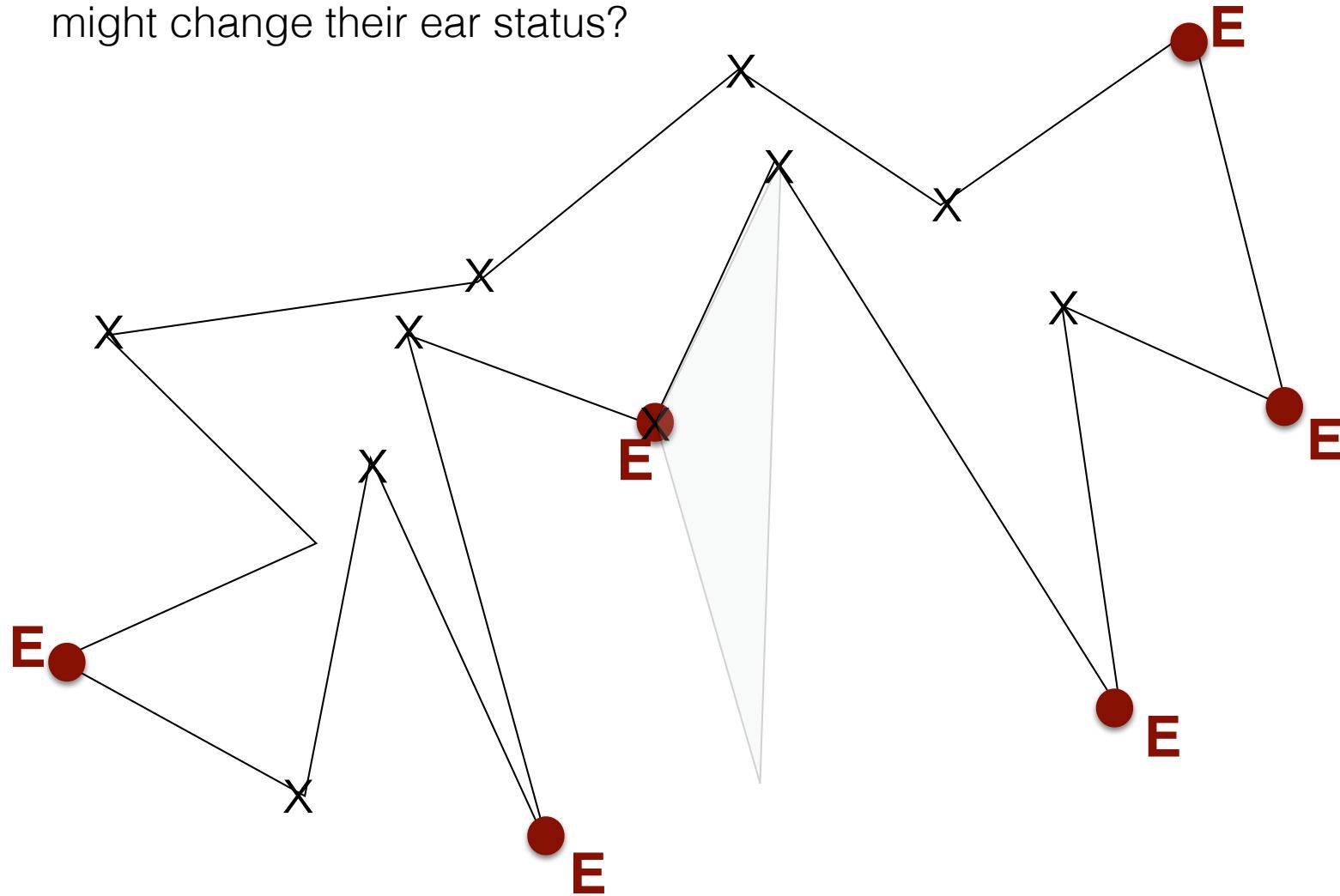
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



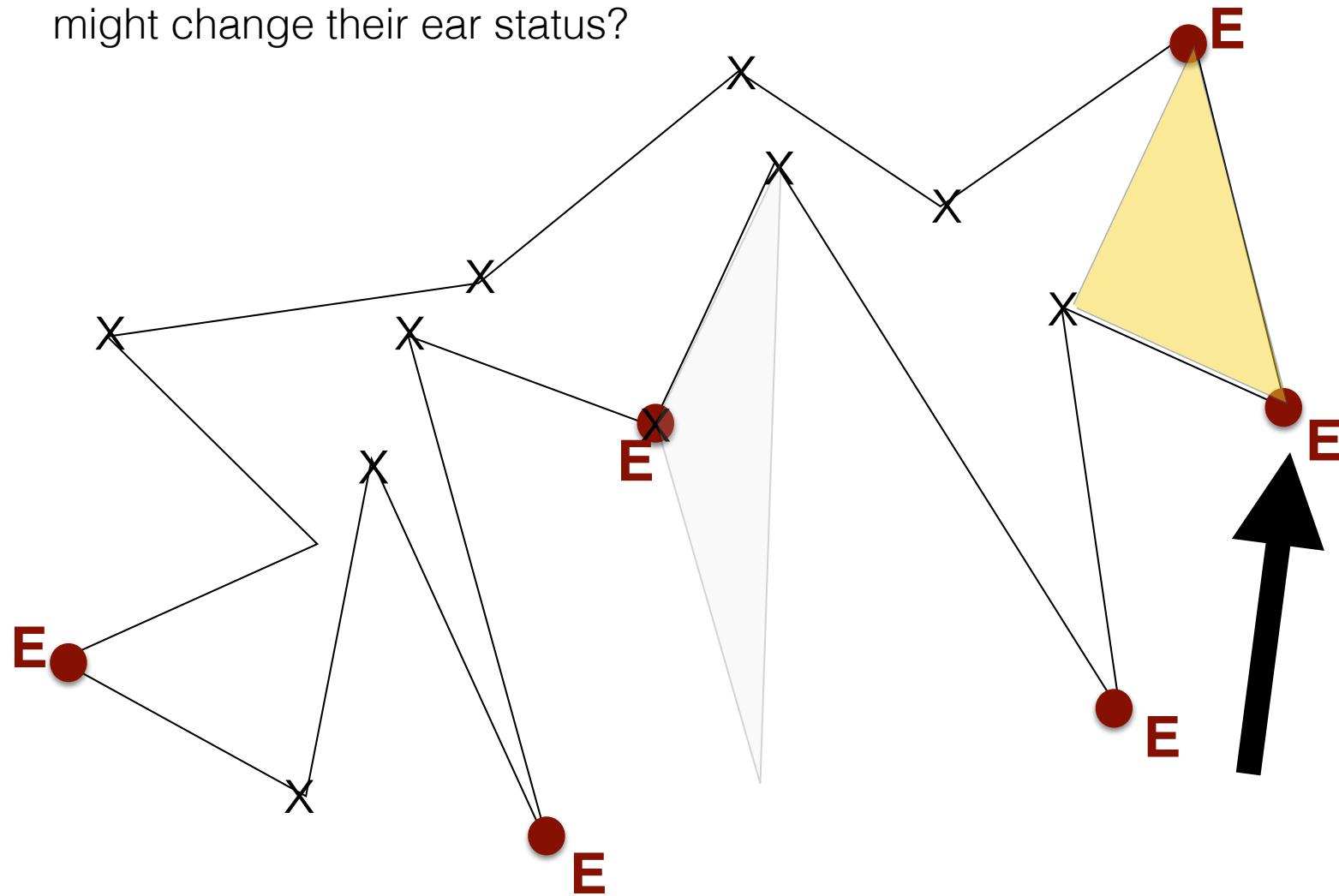
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



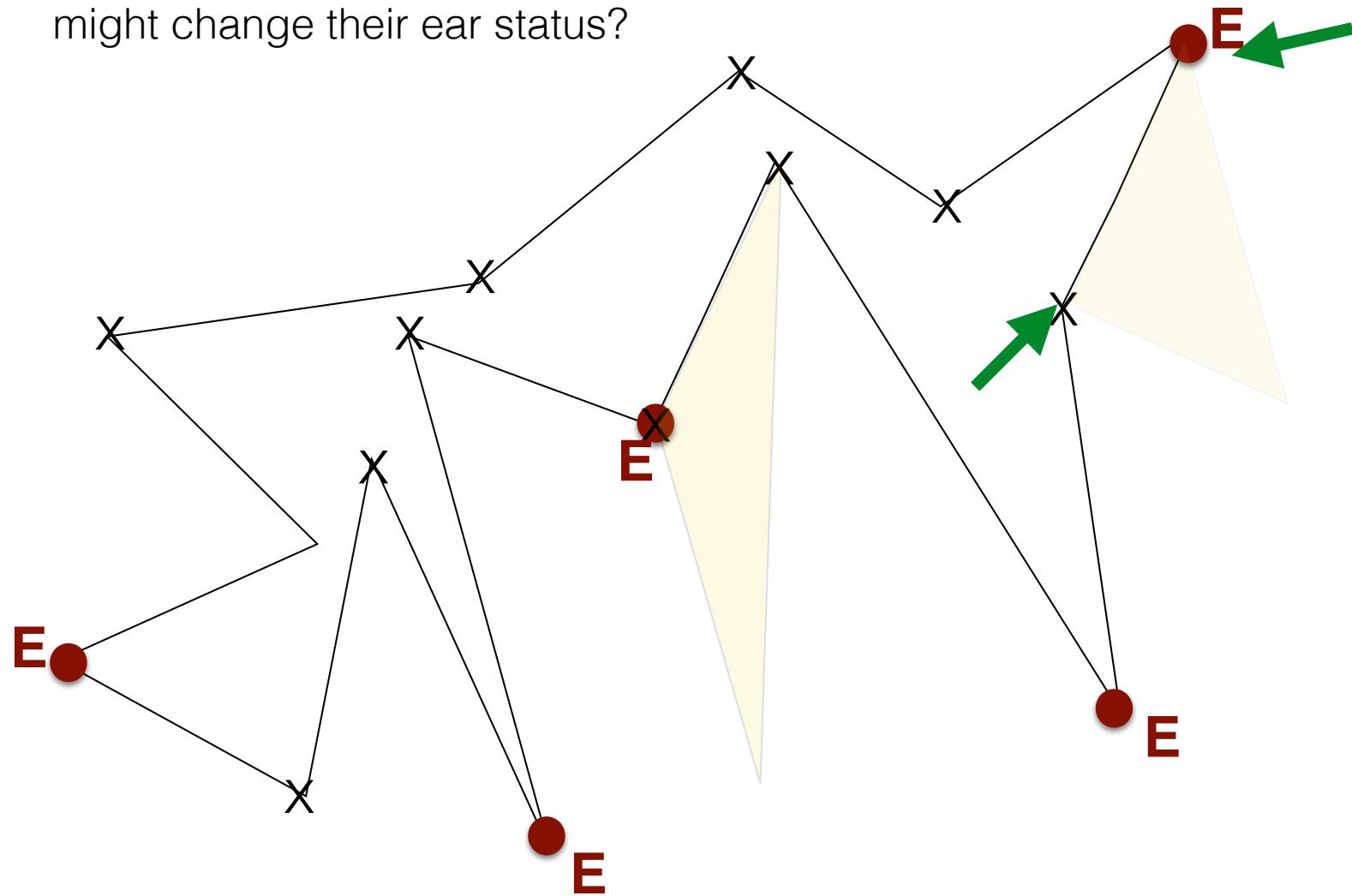
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



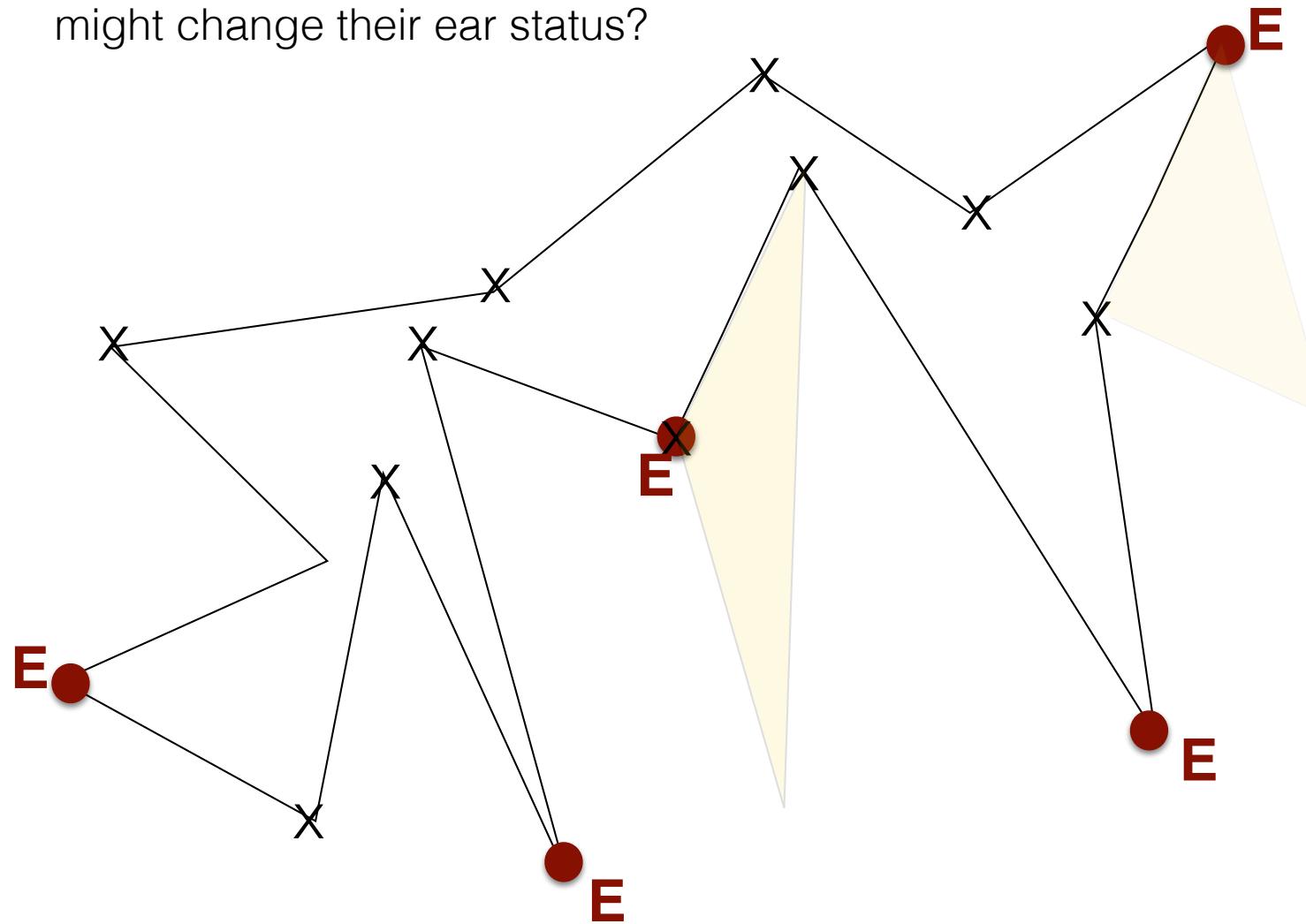
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



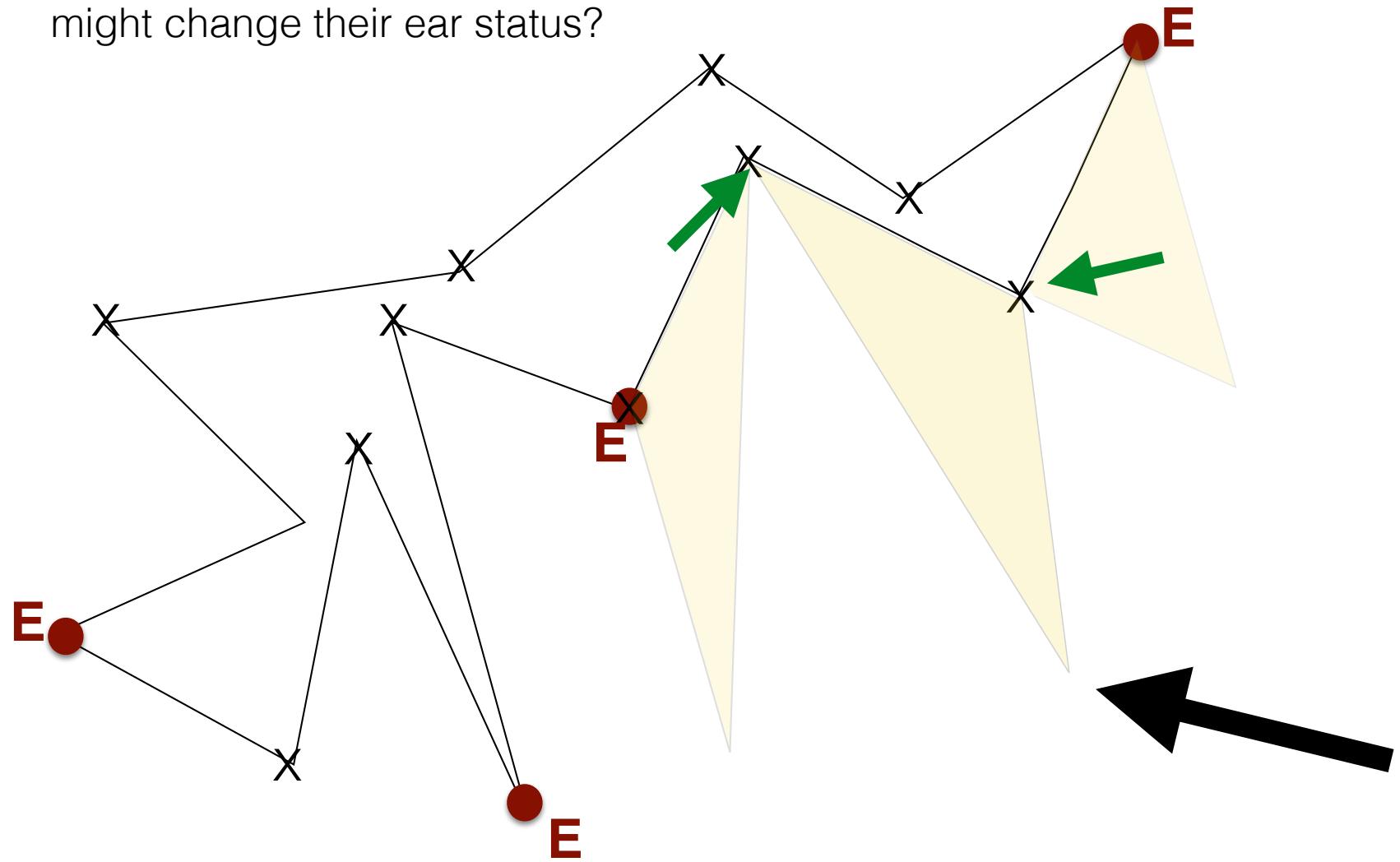
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



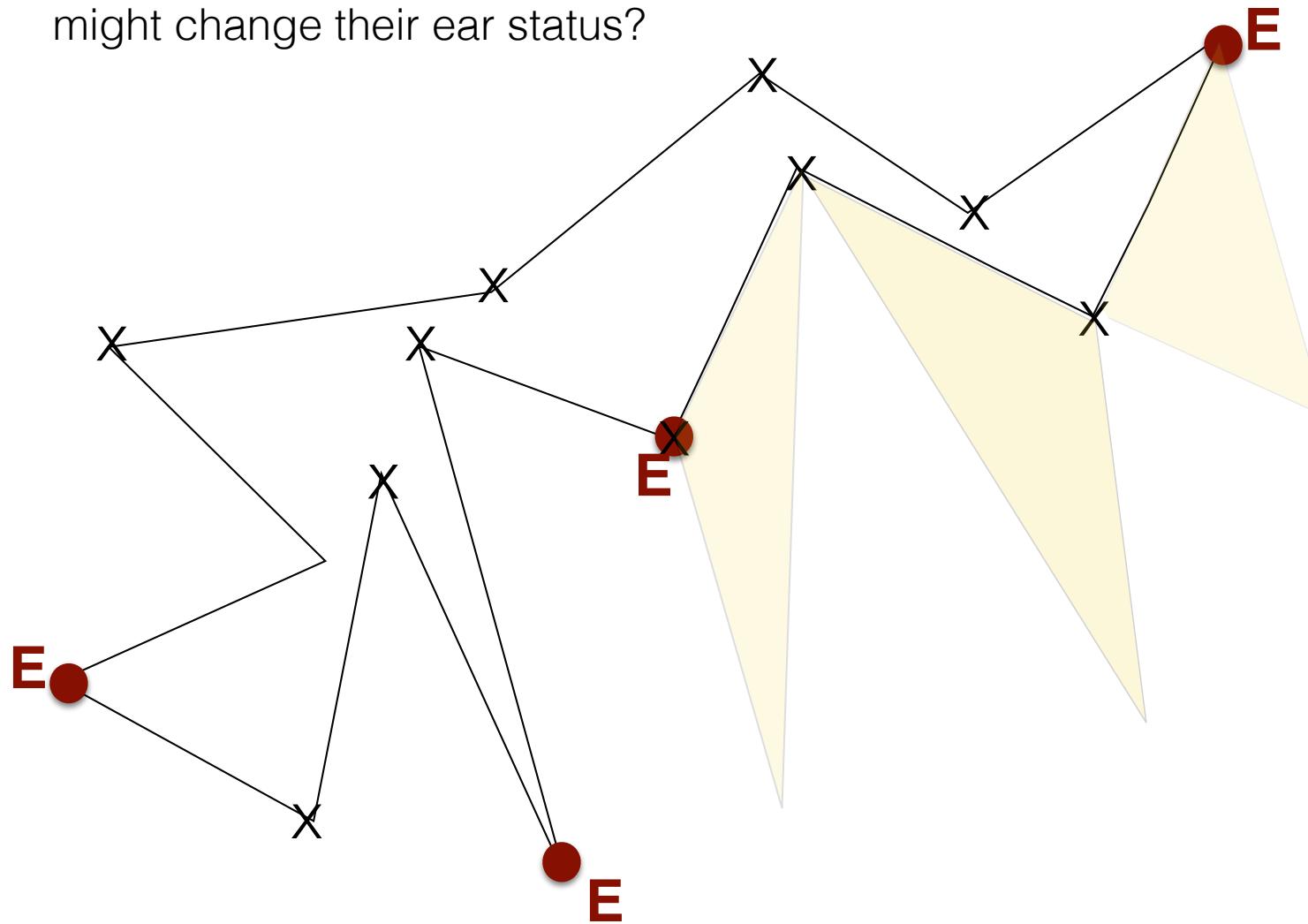
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



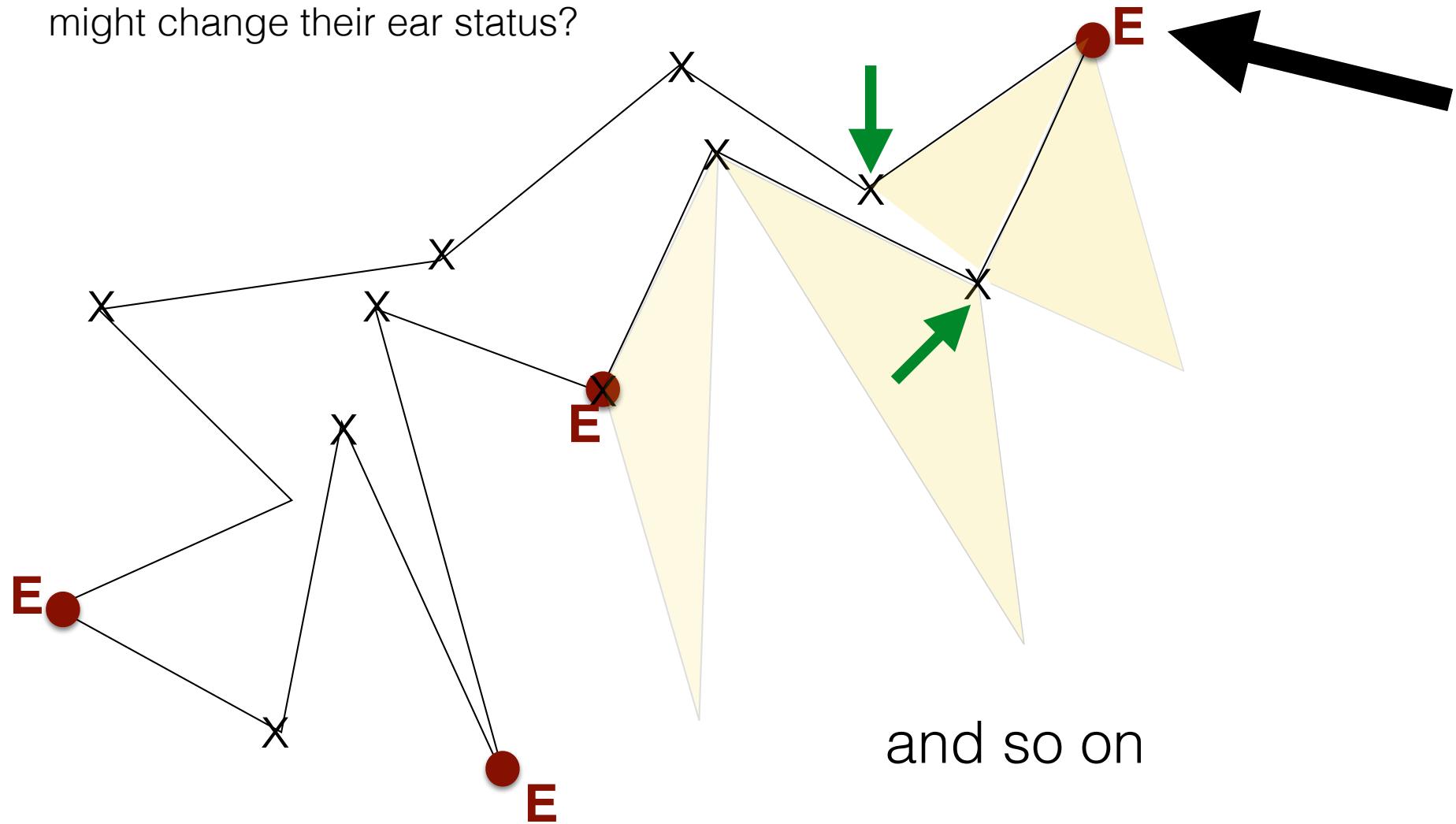
Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



Algorithm 4: Improved ear removal

- **Idea:** Avoid recomputing ear status for all vertices every time
 - When you remove an ear tip from the polygon, which vertices might change their ear status?



Algorithm 4: Improved ear removal

- Initialize the ear tip status of each vertex of P
- while $n > 3$ do:
 - locate an ear tip p
 - output diagonal p^-p^+
 - delete p
 - update ear tip status of p^- and p^+

Or, with a bit more detail,

Algorithm 4: Improved ear removal

```
//Initialize the ear tip status of each vertex of P
```

- for $i=0$, $i < n$, $i++$
 - $p[i]$ is ear if $\text{isDiagonal}(p^- p^+)$
- while $n > 3$ do:
 - $i=0$
 - while $i < P.size()$:
 - if $p[i]$ is labeled as ear:
 - output diagonal $p[i - 1]p[i + 1]$
 - update ear status for $p[i - 1]$ and $p[i + 1]$
 - delete $p[i]$ from P and set $n = n - 1$
 - else: $i++$

Algorithm 4: Improved ear removal

//Initialize the ear tip status of each vertex of P

- for $i=0, i < n, i++$
 - $p[i]$ is ear if $\text{isDiagonal}(p^- p^+)$

$O(n^2)$

- while $n > 3$ do:
 - $i = 0$
 - while $i < P.size()$:
 - if $p[i]$ is labeled as ear:
 - output diagonal
 - update ear status
 - delete $p[i]$ from
 - else: $i++$

$i + 1$] ← this takes $O(n)$
a vertex causes ear status updates
for 2 other vertices

Overall: $O(n^2)$ time

History of Polygon Triangulation

- Early algorithms: $O(n^4)$, $O(n^3)$, $O(n^2)$
- Several $O(n \lg n)$ algorithms known
- ...
- Many papers with improved bounds
- ...
- 1991: Bernard Chazelle (Princeton) gave an $O(n)$ algorithm
 - <https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf>
 - Ridiculously complicated, not practical
 - $O(1)$ people actually understand it (seriously) (and I'm not one of them)
- No algorithm is known that is practical enough to run faster than the $O(n \lg n)$ algorithms
- Still an open problem : A practical algorithm that's theoretically better than $O(n \lg n)$.

