
Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Polygon Triangulation

Given a polygon, a diagonal is a line segment between two non-
adjacent vertices of the polygon which does not intersect the polygon
(except at the vertices).

Definition

diagonal

NOT diagonal

a

b

c

a, b visible/can see each other

a, c not visible

A triangulation of a polygon is a partition of the interior of the
polygon into triangles using a set of non-intersecting diagonals.

Definition

Given a polygon P: triangulate it, i.e. output a set of diagonals that
partition the polygon into triangles.

Goal

not unique

Why triangulation?

Partitioning into simpler shapes: technique for dealing
with complexity

In 3D this is known as “meshing”

Triangulating a polygon is a simpler 2D version of the
more general meshing problem.

• Theorem 1: Any simple polygon must have a convex vertex (angle <180).

• Theorem 2: Any simple polygon with n>3 vertices contains (at least) a diagonal.

• Theorem 3: Any polygon can be triangulated by adding diagonals.

• Theorem 4: Any triangulation of a polygon of vertices has triangles and

 diagonals.

• Theorem 5: Any simple polygon has at least two ears.

n n − 2
n − 3

YES.

We can show the following:

Does a triangulation always exist?

Theorem 1: Any simple polygon contains at least one convex vertex

the angle is <180

pick the lowest vertex of the polygon

Theorem 2: Any simple polygon contains at least one diagonal.

this is a diagonal

the first vertex

hit by a horizontal line

moving up from v
parallel to ab

this is a diagonal

OR
a

b

Theorem 3: Any polygon can be triangulated by adding diagonals

Proof: By induction on the size of the polygon

 if n=3, holds trivially

Assume it holds for any k < n.

A diagonal must exist. It partition P into two polygons, each one has < n
vertices, and can be triangulated by ind. hyp.

Idea: Find a diagonal, use it to partition P, recurse on the resulting polygons

// P is a polygon given as a vector of points (in ccw order along boundary)

Polygon triangulation Algorithm 1: Naive

// return True if vertices of P form a diagonal
isDiagonal(, P)

a, b
a, b

intersection at vertices is ok for the edges
adjacent to a and b

a

b

// input: a, b are points in P, let n be the size of P

// return true if (a,b) is diagonal

bool isDiagonal(a, b, P):

• for i=0; i< n; i++

//Check edge

• if : continue

• if : continue

• if intersect(): return False

//if we got here, we know that ab intersects no edge.

//the only thing left to check is whether it’s inside or outside P

• return true if inside P, false if outside P

(pi, pi+)

(pi = = a) OR (pi = = b)

(pi+ = = a) OR (pi+ = = b)

a, b, pi, pi+

let i+ = (i = = (n − 1))?0 : i + 1

a
b

• So ab does not intersect any edges. Is ab interior or exterior?

a b

a+

a- a+

a-

not a diagonal diagonal

ab is inside the cone formed by a−, a, a+ab outside cone a−, a, a+

 //return True if ab is in the cone determined by

bool InCone(a, b):

a−, a, a+

a

a+
a-

b

a

a+

a-

b

True True

a

a+
a-

b

a

a+

a-

b

In this case and may
be both to the left of ab, or
both to the right, or one on

each side

a− a+

In this case and must
be one on each side

a− a+

But: is convex, and
 is internal to if it

is not internal to the convex

a+aa−

ab a−aa+

a+aa−

 //return True if ab is in the cone determined by

bool InCone(a, b):

a−, a, a+

a

a+
a-

b

a

a+

a-

b

bool InCone(a, b, P)

• point before a

• point after a

//if a is convex vertex

• if LeftOn : return Left() && Left()

//else a is reflex vertex

• return !(LeftOn() and LeftOn())

a− =
a+ =

(a−, a, a+) a, b, a− b, a, a+

b, a, a− a, b, a+

Note: strict Left() to exclude

ab collinear overlap with the cone

 //return True if ab is in the cone determined by a−, a, a+

//input: a, b are points in P

//return true if (a,b) is diagonal

bool isDiagonal(a,b, P):

• for i=0; i< n; i++

//Checking edge

• let

• if : continue

• if : continue

• if intersect(): return False

//if we got here, we know that ab intersects no edge.

//The only thing left to check is whether it’s inside or outside P

• return inCone(a, b, P) and inCone(b,a,P)

(pi, p(i+1)%n)
i+ = (i = = (n − 1))?0 : i + 1

(pi = = a) OR (pi = = b)

(p(i+1)mod n = = a) OR (p(i+1)mod n = = b)

a, b, pi, p(i+1)%n

Putting it all together: Is ab a diagonal?

O(n)

O(1)

==> Can check if an edge(a,b) is a diagonal of P in O(n) time

//only one necessary

//input: a, b are points in P

//return true if (a,b) is diagonal

bool isDiagonal(a,b, P):

• if !(inCone(a, b, P) and inCone(b,a,P)) : return false

• for i=0; i< n; i++

• let

• if : continue

• if : continue

• if intersect(): return False .

• return true //if we got here, we know that ab intersects no edge

i+ = (i = = (n − 1))?0 : i + 1
(pi = = a) OR (pi = = b)

(p(i+1)mod n = = a) OR (p(i+1)mod n = = b)

a, b, pi, p(i+1)%n

More efficient

O(n)

O(1) check this first

Straightforward way to find a diagonal:

• for i=0, i<n, i++

• for j=i+1, j<n, j++

• check if is diagonalpipj

So we know how to check if a segment is a diagonal, but how to find a
diagonal?

We can use this to triangulate

O(n3)

• Algorithm 1: Triangulation by finding diagonals

• Idea: Check all pairs of vertices to find one which is a diagonal, partition the

polygon and recurse.

• Analysis:

• checking all vertices: O(n2) candidates for diagonals, checking each
takes O(n), overall O(n3)

• recurse, worst case on a problem of size n-1

• overall O(n4)

• Algorithm 2: Triangulation by smartly finding diagonals

• A diagonal can be found in O(n) time (using the proof that a diagonal exists)

• Idea: Find a diagonal, output it, recurse.

• O(n2)

Naive triangulation by recursively finding diagonals

Algorithm 3: Triangulation by finding ears

A vertex of a polygon is called ear if is a diagonalp p−p+

Definition

Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P.

Theorem: Any simple polygon has at least two ears.

Theorem: Any simple polygon has at least two ears.
Proof: Triangulate P. Consider the dual graph.

Theorem: Any simple polygon has at least two ears.
Proof: Triangulate P. Consider the dual graph. The dual graph is a
tree. Any tree has at least two leaves. A leaf => ear

Algorithm 3: Triangulation by finding ears

• Traverse P and for each vertex p, determine if it’s an ear

• When find a ear p: remove it and recurse on the remaining P

Algorithm 3: Triangulation by finding ears

• Traverse P and for each vertex p, determine if it’s an ear

• When find a ear p: remove it and recurse on the remaining P

O(n)

O(n)

T(n) = T(n-1) +O(n2) => O(n3)

• Idea: Avoid recomputing ear status for all vertices every time

Algorithm 4: Improved ear removal

E
E

E

E

E

E

x
x

x

x

x

x

x
x

x

x

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E
E

E

E

E

E

x
x

x

x

x

x

x
x

x

x

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

E

E

x
x

x

x

x

x

x
x

x

x

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

E

E

x
x

x

x

x

x

x
x

x

x

E

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

E

E

x
x

x

x

x

x

x
x

x

x

E

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

E

x
x

x

x

x

x

x
x

x

x

E

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

E

x
x

x

x

x

x

x
x

x

x

E

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

x
x

x

x

x

x

x
x

x

x

E

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

x
x

x

x

x

x

x
x

x

x

E

• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

x
x

x

x

x

x

x
x

x

x

E

and so on

• Initialize the ear tip status of each vertex of P

• while n>3 do:

• locate an ear tip p

• output diagonal

• delete p

• update ear tip status of and

p−p+

p− p+

Algorithm 4: Improved ear removal

Or, with a bit more detail,

//Initialize the ear tip status of each vertex of P

• for i=0, i<n, i++

• p[i] is ear if isDiagonal()

• while n>3 do:

• i=0

• while i < P.size():

• if p[i] is labeled as ear:

• output diagonal

• update ear status for and

• delete p[i] from P and set n = n-1

• else: i++

p−p+

p[i − 1]p[i + 1]

p[i − 1] p[i + 1]

Algorithm 4: Improved ear removal

//Initialize the ear tip status of each vertex of P

• for i=0, i<n, i++

• p[i] is ear if isDiagonal()

• while n>3 do:

• i=0

• while i < P.size():

• if p[i] is labeled as ear:

• output diagonal

• update ear status for and

• delete p[i] from P and set n = n-1

• else: i++

p−p+

p[i − 1]p[i + 1]

p[i − 1] p[i + 1]

Algorithm 4: Improved ear removal

O(n2)

this takes O(n)

a vertex causes ear status updates

 for 2 other vertices

==> O(n) ear status updates
Overall: O(n2) time

History of Polygon Triangulation

• Early algorithms: O(n4), O(n3), O(n2)

• Several O(n lg n) algorithms known

• …

• Many papers with improved bounds

• …

• 1991: Bernard Chazelle (Princeton) gave an O(n) algorithm

• https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf

• Ridiculously complicated, not practical

• O(1) people actually understand it (seriously) (and I’m not one of them)

• No algorithm is known that is practical enough to run faster than the O(n lg n) algorithms

• Still an open problem : A practical algorithm that’s theoretically better than O(n lg n).

practical

not practical

