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Given a polygon, a diagonal is a line segment between two non-
adjacent vertices of the polygon which does not intersect the polygon 
(except at the vertices). 

Definition

diagonal

NOT diagonal

a

b

c

a, b visible/can see each other

a, c not visible



A triangulation of a polygon is a partition of the interior of the 
polygon into triangles using a set of non-intersecting diagonals.

Definition



Given a polygon P: triangulate it, i.e. output a set of diagonals that 
partition the polygon into triangles.

Goal

not unique



Why triangulation?

Partitioning into simpler shapes: technique for dealing 
with complexity 

In 3D this is known as “meshing” 

Triangulating a polygon is a simpler 2D version of the 
more general meshing problem. 



• Theorem 1: Any simple polygon must have a convex vertex (angle <180). 

• Theorem 2: Any simple polygon with n>3 vertices contains (at least) a diagonal.

• Theorem 3: Any polygon can be triangulated by adding diagonals.

• Theorem 4: Any triangulation of a polygon of  vertices has  triangles and 

 diagonals.

• Theorem 5: Any simple polygon has at least two ears. 

n n − 2
n − 3

YES.

We can show the following: 

Does a triangulation always exist?



Theorem 1: Any simple polygon contains at least one convex vertex


the angle is <180

pick the lowest vertex of the polygon



Theorem 2: Any simple polygon contains at least one diagonal. 

this is a diagonal

the first vertex 

hit by a horizontal line 


moving  up from v 
parallel to ab

this is a diagonal

OR
a

b



Theorem 3: Any polygon can be triangulated by adding diagonals

Proof: By induction on the size of the polygon


          if n=3,  holds trivially 


Assume it holds for any k < n. 


A diagonal must exist. It partition P into two polygons, each one has < n 
vertices, and can be triangulated by ind. hyp.



Idea: Find a diagonal, use it to partition P,  recurse on the resulting polygons 

// P is a polygon given as a vector of points (in ccw order along boundary)

Polygon triangulation Algorithm 1: Naive 



// return True if vertices  of P form a diagonal 
isDiagonal( , P)


a, b
a, b

intersection at vertices is ok for the edges 
adjacent to a and b

a

b



// input: a, b are points in P,  let n be the size of P


// return true if (a,b) is diagonal


bool isDiagonal(a, b, P): 


• for i=0; i< n; i++


//Check edge   


• if :  continue 


• if : continue 


• if  intersect( ): return False 


//if we got here, we know that ab intersects no edge. 


//the only  thing left to check is whether it’s inside or outside P


• return true if inside P, false if outside P

(pi, pi+)

(pi = = a) OR (pi = = b)

(pi+ = = a) OR (pi+ = = b)

a, b, pi, pi+

let i+ = (i = = (n − 1))?0 : i + 1



a
b

• So ab does not intersect any edges.  Is ab interior or exterior?

a b

a+

a- a+

a-

not a diagonal diagonal

ab is inside the cone formed by a−, a, a+ab outside cone  a−, a, a+



 //return True if ab is in the cone determined by 


bool InCone(a, b):

a−, a, a+

a

a+
a-

b

a

a+

a-

b

True True



a

a+
a-

b

a

a+

a-

b

In this case  and  may 
be both to the left of ab, or 
both to the right, or one on 

each side 

a− a+

In this case  and  must 
be one on each side 

a− a+

But:  is convex, and 
 is internal to  if it 

is not internal to the convex  

a+aa−

ab a−aa+

a+aa−

 //return True if ab is in the cone determined by 


bool InCone(a, b):

a−, a, a+



a

a+
a-

b

a

a+

a-

b

bool InCone(a, b, P)


• point before a


• point after a


//if a is convex vertex 


• if LeftOn :      return Left( ) && Left( )


//else a  is reflex vertex 


• return    !(  LeftOn( )  and LeftOn( )    )

a− =
a+ =

(a−, a, a+) a, b, a− b, a, a+

b, a, a− a, b, a+

Note: strict Left() to exclude 

ab collinear overlap with the cone 

 //return True if ab is in the cone determined by a−, a, a+



//input: a, b are points in P


//return true if (a,b) is diagonal


bool isDiagonal(a,b, P): 


• for i=0; i< n; i++


//Checking edge   

• let 


• if :  continue 


• if : continue 


• if  intersect( ): return False 


//if we got here, we know that ab intersects no edge. 


//The only  thing left to check is whether it’s inside or outside P


• return inCone(a, b, P) and inCone(b,a,P)

(pi, p(i+1)%n)
i+ = (i = = (n − 1))?0 : i + 1

(pi = = a) OR (pi = = b)

(p(i+1)mod n = = a) OR (p(i+1)mod n = = b)

a, b, pi, p(i+1)%n

Putting it all together: Is ab a diagonal?

O(n)

O(1)

==> Can check if an edge(a,b)  is a diagonal of P in O(n) time

//only one necessary



//input: a, b are points in P


//return true if (a,b) is diagonal


bool isDiagonal(a,b, P): 


• if !(inCone(a, b, P) and inCone(b,a,P)) : return false  


• for i=0; i< n; i++

• let 


• if :  continue 


• if : continue 


• if  intersect( ): return False . 


• return true  //if we got here, we know that ab intersects no edge

i+ = (i = = (n − 1))?0 : i + 1
(pi = = a) OR (pi = = b)

(p(i+1)mod n = = a) OR (p(i+1)mod n = = b)

a, b, pi, p(i+1)%n

More efficient

O(n)

O(1) check this first



Straightforward way to find a diagonal:

• for i=0, i<n, i++


• for j=i+1, j<n, j++


• check if  is diagonalpipj

So we know how to check if a segment is a diagonal, but how to find a 
diagonal?

We can use this to triangulate

O(n3)



• Algorithm 1: Triangulation by finding diagonals

• Idea: Check all pairs of vertices to find one which is a diagonal, partition the 

polygon and recurse. 

• Analysis: 


• checking all vertices:  O(n2) candidates for diagonals, checking each 
takes O(n), overall O(n3)


• recurse, worst case on a problem of size n-1

• overall O(n4)


• Algorithm 2: Triangulation by smartly finding diagonals

• A diagonal  can be found in O(n) time (using the proof  that a diagonal exists)

• Idea: Find a diagonal, output it, recurse. 

•  O(n2)

Naive triangulation by recursively finding diagonals 



Algorithm 3: Triangulation by finding ears



A vertex  of a polygon is called ear if  is a diagonalp p−p+

Definition



Theorem: Any simple polygon has at least two ears.



Proof: Triangulate P.


Theorem: Any simple polygon has at least two ears.



Theorem: Any simple polygon has at least two ears.
Proof: Triangulate P. Consider the dual graph.




Theorem: Any simple polygon has at least two ears.
Proof: Triangulate P. Consider the dual graph. The dual graph is a 
tree. Any tree has at least two leaves. A leaf => ear 



Algorithm 3: Triangulation by finding ears

•  Traverse P and for each vertex p, determine if it’s an ear

•  When find a ear p: remove it and recurse on the remaining P



Algorithm 3: Triangulation by finding ears

•  Traverse P and for each vertex p, determine if it’s an ear

•  When find a ear p: remove it and recurse on the remaining P

O(n)

O(n)

T(n) = T(n-1) +O(n2)  => O(n3)



• Idea: Avoid recomputing ear status for all vertices every time

Algorithm 4: Improved ear removal

E
E

E

E

E

E

x
x

x

x

x

x

x
x

x

x



• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal

E
E
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• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time

• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal

E

E

E

x
x

x

x

x

x

x
x

x

x

E

and so on



• Initialize the ear tip status of each vertex of P


• while n>3 do: 


• locate an ear tip p


• output diagonal 


• delete p 


• update ear tip status of  and 

p−p+

p− p+

Algorithm 4: Improved ear removal

Or, with a bit more detail, 



//Initialize the ear tip status of each vertex of P

• for i=0, i<n, i++

• p[i] is ear if isDiagonal( )

• while n>3 do: 

• i=0

• while i < P.size(): 

• if p[i] is labeled as ear: 

• output diagonal 

• update ear status for  and 

• delete p[i] from P and  set n = n-1

• else: i++

p−p+

p[i − 1]p[i + 1]

p[i − 1] p[i + 1]

Algorithm 4: Improved ear removal



//Initialize the ear tip status of each vertex of P

• for i=0, i<n, i++

• p[i] is ear if isDiagonal( )

• while n>3 do: 

• i=0

• while i < P.size(): 

• if p[i] is labeled as ear: 

• output diagonal 

• update ear status for  and 

• delete p[i] from P and  set n = n-1

• else: i++

p−p+

p[i − 1]p[i + 1]

p[i − 1] p[i + 1]

Algorithm 4: Improved ear removal

O(n2)

this takes O(n)

a vertex causes ear status updates

 for 2 other vertices 

==> O(n) ear status updates 
Overall: O(n2) time



History of Polygon Triangulation

• Early algorithms: O(n4), O(n3), O(n2) 

• Several O(n lg n) algorithms known

• …

• Many papers with improved bounds

• …

• 1991: Bernard Chazelle (Princeton) gave an O(n) algorithm 


• https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf

• Ridiculously complicated, not practical 

• O(1) people actually understand it  (seriously) (and I’m not one of them)


• No algorithm is known that is practical enough to run faster than the O( n lg n) algorithms

• Still an open problem : A practical algorithm that’s theoretically better than O(n lg n).

practical

not practical


