Polygon Triangulation

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Definition

Given a polygon, a diagonal is a line segment between two non-

adjacent vertices of the polygon which does not intersect the polygon
(except at the vertices).

b

a, b visible/can see each other

a, ¢ not visible diagonal

-="
-
-
-

‘:_' - = = NOT diagonal

Definition

A triangulation of a polygon is a partition of the interior of the
polygon into triangles using a set of non-intersecting diagonals.

Goal

Given a polygon P: triangulate it, i.e. output a set of diagonals that

partition the polygon into triangles.

not unique

Why triangulation?

o ’4)(.(

Partitioning into simpler shapes: technique for dealing

VA v WAy 4

. iy

SX RS N SACTEA
vaY A 4> CND A

'\ / YAA
‘ ,.fvav
A YAY. ﬂ»rw..).ﬂv..ra 4
<)

R S NVA 1]
A 4
AVLVAVA -
) J\

. ‘V ‘1\,
. vbW"A V "V
- AVAVAV YD 4
V\/\/\/\/\J
- AVAVAVAY

ng
£
-
(7))
()
£
(7))
(4v]
(-
z
Py c
< '
o N
nmv %)
) <
o &)
< ™
= £

7N

Triangulating a polygon is a simpler 2D version of the

more general meshing problem.

Does a triangulation always exist?

YES.

We can show the following:

- Theorem 1: Any simple polygon must have a convex vertex (angle <180).
- Theorem 2: Any simple polygon with n>3 vertices contains (at least) a diagonal.
- Theorem 3: Any polygon can be triangulated by adding diagonals.

. Theorem 4: Any triangulation of a polygon of n vertices has n — 2 triangles and

n — 3 diagonals.

- Theorem 5: Any simple polygon has at least two ears.

Theorem 1: Any simple polygon contains at least one convex vertex

T

the angle is <180

pick the lowest vertex of the polygon

Theorem 2: Any simple polygon contains at least one diagonal.

this is a diagonal \
a

the first vertex
k hit by a horizontal line
7 moving up from v
this is a diagonal e parallel to ab

Theorem 3: Any polygon can be triangulated by adding diagonals

—

Polygon triangulation Algorithm 1: Naive

/[P is a polygon given as a vector of points (in ccw order along boundary)

|dea: Find a diagonal, use it to partition P, recurse on the resulting polygons

// return True if vertices a, b of P form a diagonall
isDiagonal(a, b, P)

intersection at vertices is ok for the edges
adjacenttoaand b

etit=(G{==m-1))?0

/[input: a, b are points in P, let n be the size of P
/[return true if (a,b) is diagonal
bool isDiagonal(a, b, P):
e fori=0; i< n; i++
//[Check edge (p;, p;+)
o if (p;==a)OR (p; == b): continue
o if (p;+ == a) OR (p;+ = = b): continue
. if intersect(a, b, p;, p;+): return False
//if we got here, we know that ab intersects no edge.
/[the only thing left to check is whether it's inside or outside P

e return true if inside P, false if outside P

i+ 1

-+ S0 ab does not intersect any edges. Is ab interior or exterior?

-

not a diagonal diagonal

ab outside cone a”,a,a”* ab is inside the cone formed by a~, a,a™

//return True if ab is in the cone determined by a ", a,a™

bool InCone(a, b):

//return True if ab is in the cone determined by a ", a,a™

bool InCone(a, b):

In this case a~ and a™ must

be one on each side

>at

In this case a~ and a™* may
be both to the left of ab, or
'both to the right, or one on
) each side

_ But:ataa is convex, and

d ab is internal to a"aa™ if it

Is not internal to the convex
ataa”

/[return True if ab is in the cone determined by a ™, a, at
bool InCone(a, b, P)

e a4 = point before a

+ _ .
e a' = point after a Note: strict Left() to exclude
ab collinear overlap with the cone

RN

. if LeftOn(a™,a,a™): return Left(a, b, a™) && Left(b, a,a™)

. return I(LeftOn(b,a,a™) and LeftOn(a, b,a™))

Putting it all together: Is ab a diagonal?

//input: a, b are points in P
//return true if (a,b) is diagonal
bool isDiagonal(a,b, P):

e fori=0; i< n; i++

/[Checking edge (P;s Pit1y%n)
eletit=>G(==m-1)20:i+1
O(n) o if (p;==a)OR (p, == b): continue
o it (Pis1ymod n == @ OR (P(it1ymoa n = = b): continue
o if intersect(a, b, p;, P(iy1)%n): return False
/[if we got here, we know that ab intersects no edge.

//[The only thing left to check is whether it's inside or outside P

O(1) e returninCone(a, b, P) ardirSenela;R} /lonly one necessary

==> Can check if an edge(a,b) is a diagonal of P in O(n) time

More efficient

//input: a, b are points in P
/[return true if (a,b) is diagonal
bool isDiagonal(a,b, P):
O(1) « if I(inCone(a, b, P)-anarConetb-a-P)) : return false m

e fori=0; i< n;i++
eletit=((==m-1)20:i+1
o if (p;==a)OR (p; == b): continue
O(n) . . — = }) -
o if (p(i+1)m0dn = =q) OR (p(i+1)m0dn = = b): continue
. if intersect(a, b, p;, Pi4 1)) return False .

e return true //if we got here, we know that ab intersects no edge

So we know how to check if a segment is a diagonal, but how to find a
diagonal?

Straightforward way to find a diagonal:
e fori=0, i<n, i++
e forj=i+1, j<n, j++ 0(n3)

. check if p;p;is diagonal

We can use this to triangulate

Naive triangulation by recursively finding diagonals

e Algorithm 1: Triangulation by finding diagonals

» |dea: Check all pairs of vertices to find one which is a diagonal, partition the
polygon and recurse.

e Analysis:

» checking all vertices: O(n2) candidates for diagonals, checking each
takes O(n), overall O(n3)

e recurse, worst case on a problem of size n-1

e overall O(n4)

e Algorithm 2: Triangulation by smartly finding diagonals
« A diagonal can be found in O(n) time (using the proof that a diagonal exists)
* |dea: Find a diagonal, output it, recurse.
e O(n2)

Algorithm 3: Triangulation by finding ears

A bat-eared fox peeks from the grass in Hwange National Park, Zimbabwe.
PHOTOGRAPH BY ROY TOFT, NAT GEO IMAGE COLLECTION

Definition

A vertex p of a polygon is called ear ifp‘pJr IS a diagonal

Theorem: Any simple polygon has at least two ears.

Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P.

Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P. Consider the dual graph.

Theorem: Any simple polygon has at least two ears.

Proof: Triangulate P. Consider the dual graph. The dual graphis a

tree. Any tree has at least two leaves. A leaf => ear

Algorithm 3: Triangulation by finding ears

e raverse P and for each vertex p, determine if it's an ear

e \When find a ear p: remove it and recurse on the remaining P

Algorithm 3: Triangulation by finding ears om)

/

O(n) e Traverse P and for each vertex p, determine if it's an ear

e \When find a ear p: remove it and recurse on the remaining P

T(n-1) +O(n2) => O(n3)

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

E

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status? E

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

E

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

E

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

E

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

E

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

E

Algorithm 4: Improved ear removal

* Idea: Avoid recomputing ear status for all vertices every time

* When you remove an ear tip from the polygon, which vertices
might change their ear status?

and so on

Algorithm 4: Improved ear removal

 Initialize the ear tip status of each vertex of P
e while n>3 do:

e locate aneartipp

. output diagonal p~p*

» delete p

. update ear tip status of p~ and p*

Or, with a bit more detalil,

Algorithm 4: Improved ear removal

- fori=0, i<n, i++

. plil is ear if isDiagonal(p " p™*)

- while n>3 do:
- i=0
- while i < P.size():
- if p[i] is labeled as ear:
. output diagonal p[i — 1]p[i + 1]
. update ear status for p[i — 1] and p[i + 1]
- delete p[i] from P and set n =n-1

- else: 1++

Algorithm 4: Improved ear removal

- fori=0, i<n, i++

] O(n2)

. plil is ear if isDiagonal(p ~p™)

- while n>3 do:
- i=0
- while i < P.size():
- if p[i] is labeled as ear:
. output diagonal p[i — 1]p[i + 1]
. update ear status for p[i — 1] and p[i + 1] +— this takes O(n)
- delete p[i] from P and set n =n-1

a vertex causes ear status updates
- else: i++ for 2 other vertices

==> O(n) ear status updates

Overall: O(n2) time

History of Polygon Triangulation

Early algorithms: O(n4), O(n3), O(n2)
Several O(n Ig n) algorithms known < prac’[ica|

Many papers with improved bounds «

not practical

1991: Bernard Chazelle (Princeton) gave an O(n) algorithm <———
 https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf
 Ridiculously complicated, not practical

* O(1) people actually understand it (seriously) (and I'm not one of them)

No algorithm is known that is practical enough to run faster than the O(n Ig n) algorithms

Still an open problem : A practical algorithm that’s theoretically better than O(n Ig n).

