F‘%ange searching

with

. Range ITrees

1D

« Balanced BinarySearchTree
* Build: O(n Ig n)
* Space: O(n)
 Range queries: O(Ig n +k)

2D
e kd-trees * Range trees
e Build: O(nIg n) e Build: O(nlg n)
e Space: O(n) e Space: O(nIg n)
e Range queries: OWn + k) e Range queries: O(lg n + k)

Different trade-offs

Towards range trees

e Build BBST by x-coord
« Range queries: find all points in [x, X,] X [y, ¥,]
* Use BBST to find all points with the x-coordinates in [x1, x2]

e Traverse these points and find those with y-coord in [y1, y2]

O(gn +n') o(n')
° =]

® o o
Yo

- . o . s

I @ I o] . o
) * yi
X4 X2 X4

Slow if n’is large but k is small

A closer look

* Use BBST to find all points with the x-coordinates in [x1, x2]

BBST by x-coord

“ <" Example of a 1D range query

O 42,

RANGE-QUERY([7, 41])

;IIQI"H,”_, General 1D range query

‘ root

split node ‘

N

The k points in the range sit in O(lg n) subtrees

A closer look

* Use BBST to find all points with the x-coordinates in [x1, x2]

The points in [xq, x,] sit in O(lg n) subtrees

A closer look

* Use BBST to find all points with the x-coordinates in [x1, x2]
The points in [xq, x,] sit in O(lg n) subtrees
e Of all these points, we need those with the y-coordinates in [y1, y2]

For each subtree we need all points in [y1,y2]

For each of these subtrees
we’ll build data structure for
searching on y-coord

What is a good data structure for
searching on y?
A BBST by y-coord!

BBST

« We'll use a variant of BBSTs that store all data in leaves (it makes details simpler)

Example: P=1{1,3,4, 7,11, 13}

e root: median of P
e |eft: tree of first half
e right: tree of second half

4

}f’/ U1

ANAN

Class work

« Show the BBST with all data in leaves forP ={1, 2, 3,4, 5,6, 7, 8, 9, 10}

e root: median of P
« Write pseudocode for the algorithm to build BBST(P) e left: tree of first half

e right: tree of second half

//P: a set of keys

//create BBST of P with all keys in leaves and return its root

buildBBST (P)

* Running time analysis in general.

* Running time analysis if P is given sorted.

And finally, the 2D Range Tree!

P: set of points
RangeTree(P) is
« A BBST T of P ordered by x-coord

« Each node v in T stores an associated structure TaSSOC
of P(v) ordered by y-coord

% NaW
P(v)

N

P(v): all points in subtree rooted at v

that's a BBST

Every internal node stores a whole tree in an associated

structure, on y-coordinate
< O < <

()
(] (O] (] ()] (] (-] ()] (-
HEpEpEnEnEnEnEnEnEnEnEnEnEnERENE

® { ®

A~ N N N /N /N /N /N

N’ e N N N N N N

(9,4)

(7,3)] (8,1)

(6,7)

(4,2)] (5,9)

(3,8)

(1,5)

The 2D Range Tree

Questions
* How to build one and how fast?
« How much space does it use?

* How to answer range queries and how fast?

Building a 2D Range Tree

/I param: P is an array of points
/I return: builds the 2d-range tree for P and returns its root

Build2DRT(P)
1. if P contains only one point:
- create a leaf v storing this point, (create its T . which is just leaf) and return v
2. else
» Construct the associated structure:
- root . = buildBBST(P) // ordered by the y-coordinates
« Partition P into 2 sets w.r.t. the median coordinate Xmiddie:
* Pt ={p in P with px <= Xmiddie}, Pright={p in P with py > Xmiddie}
. vVleft = Build2DRT (Pleft)
« Vright = Build2DRT(Prignt)
- Create a node v
* VX = Xniddle
- v.left = vieft
- v.right = vright
« V.Aassoc = root_assoc

- return v

Building a 2D Range Tree

Running time:

« Let T'(n) be the time of Build2DRT(P) , on a set P of n points

« T(n) consists of:
« building the associated structure, a BBST on n keys: O(nlgn) (if P not sorted by y)
« finding the median and partition: O(n)
* two recursive calls

« Overall T(n) = 2T(n/2) + O(nlgn)

« This solves to T(n) = O(n lg2 n)

e Remember our trick?

Building a 2D Range Tree

Common trick: pre-sort P and pass it as argument
//Px is set of points sorted by x-coord
//Py is set of points sorted by y-coord

Build2DRT(Px, Py)

Maintain the sorted sets through recursion
Pleﬁ_sorted—by—x, Pleﬂ_sorted—by—y,

P”-g,h[-SOrted—by—x, P,,l-gm_sorted—by—y

If the keys are in order, a BBST can be built in O(n)
We have T(n) = 2T(n/2) + O(n) which solves to O(nlg n)

Theorem: A 2d-range tree for a set of n points can be built in ®(nlg n) time.

Class work

Show the range tree for

p1=U4),p, =05,8),p3=4,1),py = (7,3),p5s = (3,2), pg = (2,6), p; = (8,7)

The 2D Range Tree: Space

Theorem: A 2d-range tree for a set of n points in the plane has ®(nlg n) size.

Two arguments:

» At each level in the tree, each point is stored exactly once (in the associated structure of
precisely one node). So every level stores all points and uses O(n) space => O(nlgn)

Or: Each point p is stored in the associated structures of all nodes on the path from root to p. So
one point is stored O(Ig n) times => O(n Ig n)

Range queries with the 2D Range Tree

Find the split node xspit Where the search paths
for x1 and x2 split

Follow path root to xi: for each node v to the . . :
Every internal node stores a whole tree in an associated

right of the path, query its associated structure structure, on y-coordinate

Tassoc(V) with [Y1,Y2]
Follow path root to xo: for each node v to the i|

left of the path, query its associated structure
Tassoo(V) with [y1,y2]

(Also, while traversing these paths, check and
report the nodes on the path)

How long does this take?

Range queries with the 2D Range Tree

There are O(lg n) subtrees in between the paths

We query each one of them using its associated structure

° Querying Tassoc takes O(Ig nv -+ k’) Every internal node stores a whole tree in an associated
structure, on y-coordinate
« Overall it takes Z O(gn, + k') = O(lg’n + k) ‘

n,: number of points in k" number of points in
Tassoc Tassoc that are in [y1 ,y2]

Theorem: A 2d-range tree for a set of n points answers range queries in
O(1g* n + k) time.

We like logs!! Also, it is known how to improve this to O(lgn + k) time.

1D

« Balanced BinarySearchTree
* Build: O(n Ig n)
* Space: O(n)
 Range queries: O(Ig n +k)

2D
e kd-trees * Range trees
e Build: O(nIg n) e Build: O(nlg n)
e Space: O(n) e Space: O(nIg n)
e Range queries: OWn + k) e Range queries: O(lg n + k)

Different trade-offs

Kd-tree vs Range Tree: Does it really matter?

in 2D

n | logn | log°n | \/n
16 4 16 4
64 6 36 8

256 3 064 16
1024 10 100 32
4096 12 144 04

16384 14 196 | 128

65536 16 256 | 256

1M 20 400 | 1K
16M 24 576 | 4K

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

Range-trees generalize easily to d-dimensions

3D Range Trees

P: set of points in 3D
3DRangeTree(P) is
« A BBST T of P ordered by x-coord

« Each node v in T stores an associated structure TaSSOC
range tree for P(v)

very internal nod e tree in an associated

sorted by y\ o ><I
LT
EpEpEnEnERERERERERERERE

<

sorted by X

that’s a 2D

3D Range Trees

Build time: O(n1g? n)

e Think recursively
« Let By(n) be the time to build a 3D Range Tree of n points
« Find a recurrence for Bs(n)

e Think about how we build it : we build an associated structure for P that’s
a 2D range tree; then we build recursively a 3D range tree for the left and
right half of the points

o By(n) = 2B5;(n/2) + By(n)

. This solves to O(n1g? n)

3D Range Trees

Size: O(nlg?n)

* Why? we can thinks of this in two ways:

. An associated structure for n points uses O(n lg n) space. Each point is
stored in all associated structures of all its ancestors =>0(n lg2 n)

e Or, recursively

o Let $5(n) be the size of a 3D Range Tree of n points

Find a recurrence for S5(n)

We build an associated structure for P that’s a 2D range tree; then we
build recursively a 3D range tree for the left and right half of the points

S3(n) = 285:(n/2) + S,(n)

This solves to O(n 1g? n)

3D Range Trees

Query:
« Query BBST on x-coord to find O(lg n) nodes (roots of subtrees)

e Then perform a 2D range query in each node

Time:
« Let Os(n) be the time to answer a 3D range query
« Find a recurrence for Qs(n)
e Ox(n)=0Ign)+ O(lgn) X Q,(n)
. This solves to O(nlg’ n + k)

Kd-tree vs Range Tree

4D

n | logn 10g4n n3/4

1024 10 10,000 181
65,536 16 65,536 4096
1M 20 160,000 32,768

1G 30 310,000 | 5,931,641

1T 40 | 2,560,000 1G

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

Class work

Show the 3D-range tree for the the set of points below:

b(2,5,1)

