
Range searching 

with 


Range Trees



• kd-trees

• Build:                  O(n lg n)

• Space:                O(n)

• Range queries:   O(  n + k)

2D

1D
• Balanced BinarySearchTree


• Build:                  O(n lg n)

• Space:                O(n)

• Range queries:   O(lg n +k)

• Range trees

• Build:                O(n lg n)

• Space:              O(n lg n)

• Range queries: O(lg n + k)

Different trade-offs



Towards range trees

x1 x2

y2

y1

x1 x2

O(lg n + n′￼) O(n′￼)

Slow if  is large but  is smalln′￼ k

• Build BBST by x-coord


• Range queries: find all points in 


• Use BBST to find all points with the x-coordinates in [x1, x2]    

• Traverse these points and find those with y-coord in [y1, y2]

[x1, x2] × [y1, y2]



x-order

A closer look

BBST by x-coord

x1 x2

• Use BBST to find all points with the x-coordinates in [x1, x2]    






The  points in the range sit in  subtreesk O(lg n)



• Use BBST to find all points with the x-coordinates in [x1, x2]    


x1 x2

x-order

A closer look

The points in  sit in  subtrees[x1, x2] O(lg n)



For each subtree we need all points in [y1,y2]

For each of these subtrees 
we’ll build data structure for  

searching on y-coord

What is a good data structure for 
searching on y? 

A BBST by y-coord!

• Use BBST to find all points with the x-coordinates in [x1, x2]    


•  Of all these points, we need those with the y-coordinates in [y1, y2]

The points in  sit in  subtrees[x1, x2] O(lg n)

A closer look



BBST
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Example:   P = { 1, 3, 4, 7, 11, 13 }

• We’ll use a variant of BBSTs that store all data in leaves (it makes details simpler)

• root: median of P

• left: tree of first half 

• right: tree of second half 



Class work


• Show the BBST with all data in leaves for P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}


• Write pseudocode for the algorithm to build BBST(P)


//P: a set of keys 


//create BBST of P with all keys in leaves and return its root 


buildBBST ( P ) 


• Running time analysis in general. 


• Running time analysis if P is given sorted. 

• root: median of P

• left: tree of first half 

• right: tree of second half 



And finally, the 2D Range Tree!

: set of points

RangeTree( ) is 


• A BBST  of  ordered by -coord


• Each node  in  stores an associated structure  that’s a BBST 
of  ordered by -coord

P
P

T P x
v T Tassoc

P(v) y

v

: all points in subtree rooted at P(v) v

Tassoc(v)

P(v)



screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)



screen shot from Mark van Kreveld, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)
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The 2D Range Tree

Questions


• How to build one and how fast? 


• How much space does it use? 


• How to answer range queries and how fast? 




//  param:   is an array of points 
//  return: builds the 2d-range tree for P and returns its root 
Build2DRT( P )

1. if P contains only one point: 

• create a leaf v storing this point, (create its  which is just leaf)  and return v

2. else 
• Construct the associated structure: 

•  = buildBBST(P) // ordered by the y-coordinates

• Partition P into 2 sets w.r.t. the median coordinate xmiddle: 
• Pleft = {p in P  with  px <= xmiddle}, Pright= {p in P  with  py > xmiddle}

•  = Build2DRT(Pleft)

•  = Build2DRT(Pright)

• Create a node 

•

•

•

•

• return 

P

Tassoc

rootassoc

vleft
vright

v
v . x = xmiddle

v . left = vleft
v . right = vright
v . assoc = root_assoc

v

Building a 2D Range Tree



Running time:


• Let  be the time of Build2DRT(P) , on a set   of  points


•   consists of: 


• building the associated structure, a BBST on   keys:   (if P not sorted by y) 


• finding the median and partition:  


• two recursive calls


• Overall 


• This solves to 


•  Remember our trick?

T(n) P n

T(n)

n O(n lg n)

O(n)

T(n) = 2T(n /2) + O(n lg n)

T(n) = O(n lg2 n)

Building a 2D Range Tree



• Common trick:  pre-sort P and pass it as argument 


//Px is set of points sorted by x-coord

//Py is set of points sorted by y-coord

Build2DRT(Px, Py)

• Maintain the sorted sets through recursion 


   -sorted-by-x,   -sorted-by-y,   


-sorted-by-x,  -sorted-by-y


• If the keys are in order, a BBST can be built in 


• We have   which solves to  

Pleft Pleft

Pright Pright

O(n)
T(n) = 2T(n /2) + O(n) O(n lg n)

Building a 2D Range Tree

Theorem: A 2d-range tree for a set of  points can be built in   time.  n Θ(n lg n)



Class work


Show the range tree for



p1 = (1,4), p2 = (5,8), p3 = (4,1), p4 = (7,3), p5 = (3,2), p6 = (2,6), p7 = (8,7)



The 2D Range Tree: Space



The 2D Range Tree: Space

Two arguments:  


• At each level in the tree, each point is stored exactly once (in the associated structure of 
precisely one node). So every level stores all points and uses O(n) space  => O( n lg n) 


Or: Each point p is stored in the associated structures of all nodes on the path from root to p.  So  
one point is stored O(lg n) times => O( n lg n)

Theorem: A 2d-range tree for a set of  points in the plane has    size.  n Θ(n lg n)



• Find the split node xsplit  where the search paths 
for x1 and x2 split


• Follow path root to x1: for each node v to the 
right of the path, query its associated structure 
Tassoc(v) with [y1,y2]


• Follow path root to x2: for each node v to the 
left of the path, query its associated structure 
Tassoc(v) with [y1,y2]


• (Also, while traversing these paths, check and 
report the nodes on the path)

Range queries with the 2D Range Tree

How long does this take?



Range queries with the 2D Range Tree

nv: number of points in Tassoc

: number of points in 
Tassoc that are in [y1,y2]
k′￼

Theorem: A 2d-range tree for a set of  points answers range queries in   

 time.  

n
O(lg2 n + k)

We like logs!!  Also, it is known how to improve this to  time. O(lg n + k)

• There are  subtrees in between the paths


• We query each one of them using its associated structure 


• Querying  Tassoc takes 


• Overall it takes  


   

O(lg n)

O(lg nv + k′￼)

∑ O(lg nv + k′￼) = O(lg2 n + k)

: number of points in 
Tassoc

nv



• kd-trees

• Build:                  O(n lg n)

• Space:                O(n)

• Range queries:   O(  n + k)

2D

1D
• Balanced BinarySearchTree


• Build:                  O(n lg n)

• Space:                O(n)

• Range queries:   O(lg n +k)

• Range trees

• Build:                O(n lg n)

• Space:              O(n lg n)

• Range queries: O(lg n + k)

Different trade-offs



Kd-tree vs Range Tree: Does it really matter? 

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

  in 2D

YES!



Range-trees generalize easily to d-dimensions 



3D Range Trees

sorted by y

sorted by z
v

sorted by x

: set of points in 3D

3DRangeTree( ) is 


• A BBST  of  ordered by -coord


• Each node  in  stores an associated structure  that’s a 2D 
range tree for 

P
P

T P x
v T Tassoc

P(v)



3D Range Trees

Build time: 


• Think recursively


• Let  be the time to build a 3D Range Tree of  points 


• Find a recurrence for 


• Think about how we build it : we build an associated structure for P that’s 
a 2D range tree; then we build recursively a 3D range tree for the left and 
right half of the points 


• 


• This solves to 

O(n lg2 n)

B3(n) n

B3(n)

B3(n) = 2B3(n /2) + B2(n)

O(n lg2 n)



3D Range Trees

Size:  


• Why? we can thinks of this in two ways: 


• An associated structure for  points uses  space. Each point is 
stored in all associated structures of all its ancestors => 


• Or,  recursively 


• Let  be the size of a 3D Range Tree of  points 


• Find a recurrence for 


• We build an associated structure for P that’s a 2D range tree; then we 
build recursively a 3D range tree for the left and right half of the points 


• 


• This solves to 

O(n lg2 n)

n O(n lg n)
O(n lg2 n)

S3(n) n

S3(n)

S3(n) = 2S3(n /2) + S2(n)

O(n lg2 n)



3D Range Trees

Query: 


• Query BBST on x-coord to find  nodes (roots of subtrees)


• Then perform a 2D range query in each node


Time: 


• Let  be the time to answer a 3D range query 


• Find a recurrence for 


• 


• This solves to 

O(lg n)

Q3(n)
Q3(n)

Q3(n) = O lg n) + O(lg n) × Q2(n)
O(n lg3 n + k)



Kd-tree vs Range Tree

4D

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)



b(2,5,1)

a(1,2,3)

c (3,3,5)

d (4,1,2)

e (5,4,5)

Show the 3D-range tree for the the set of points below:

Class work


