

Range searching

with

Range Trees

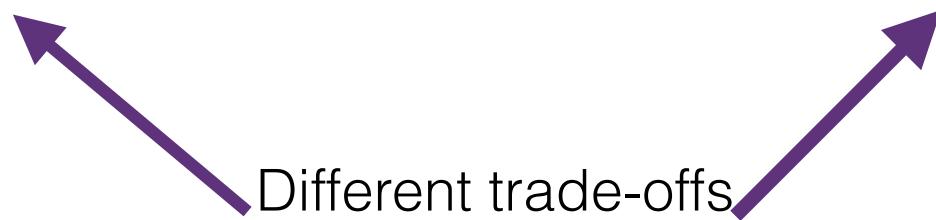
1D

- Balanced BinarySearchTree
 - Build: $O(n \lg n)$
 - Space: $O(n)$
 - Range queries: $O(\lg n + k)$

2D

- kd-trees
 - Build: $O(n \lg n)$
 - Space: $O(n)$
 - Range queries: $O(\sqrt{n} + k)$

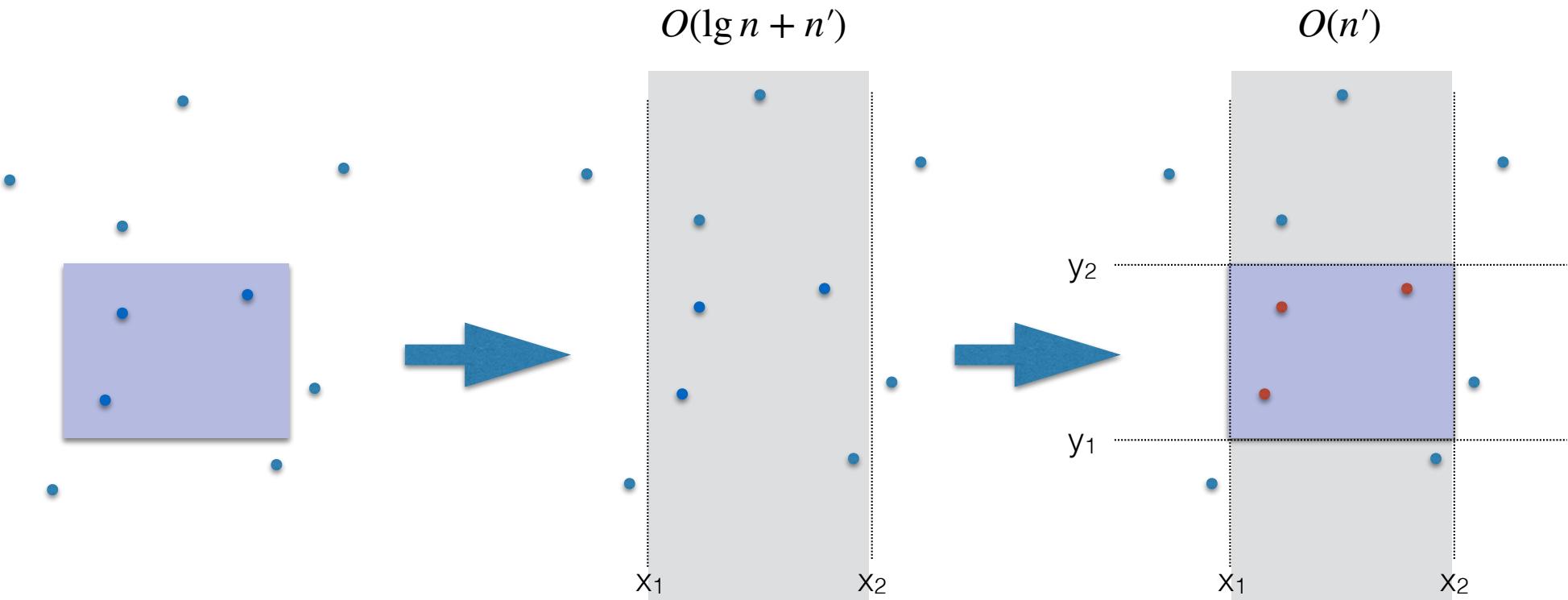
- Range trees
 - Build: $O(n \lg n)$
 - Space: $O(n \lg n)$
 - Range queries: $O(\lg n + k)$



Different trade-offs

Towards range trees

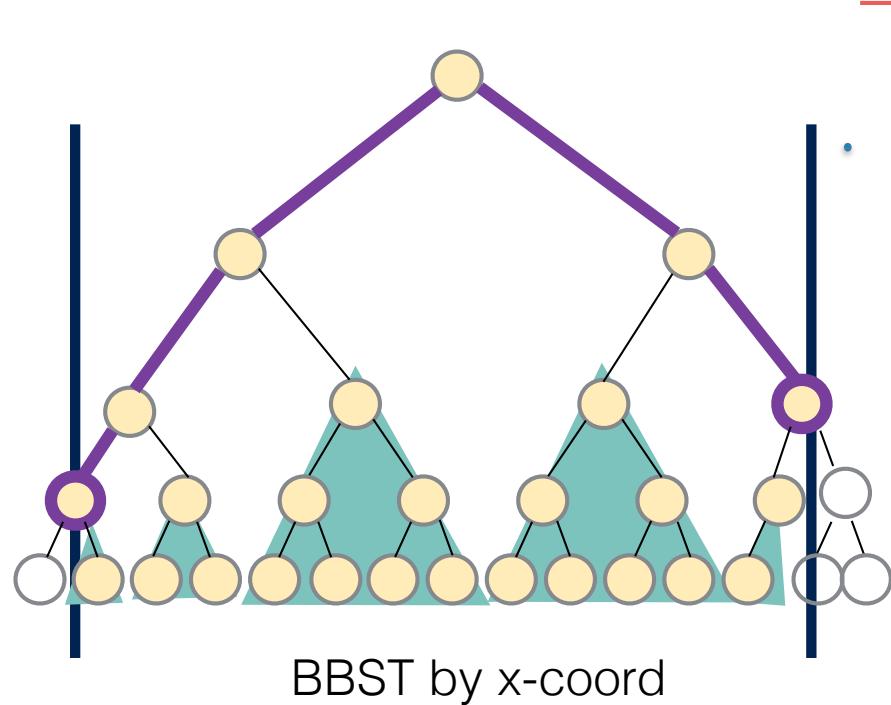
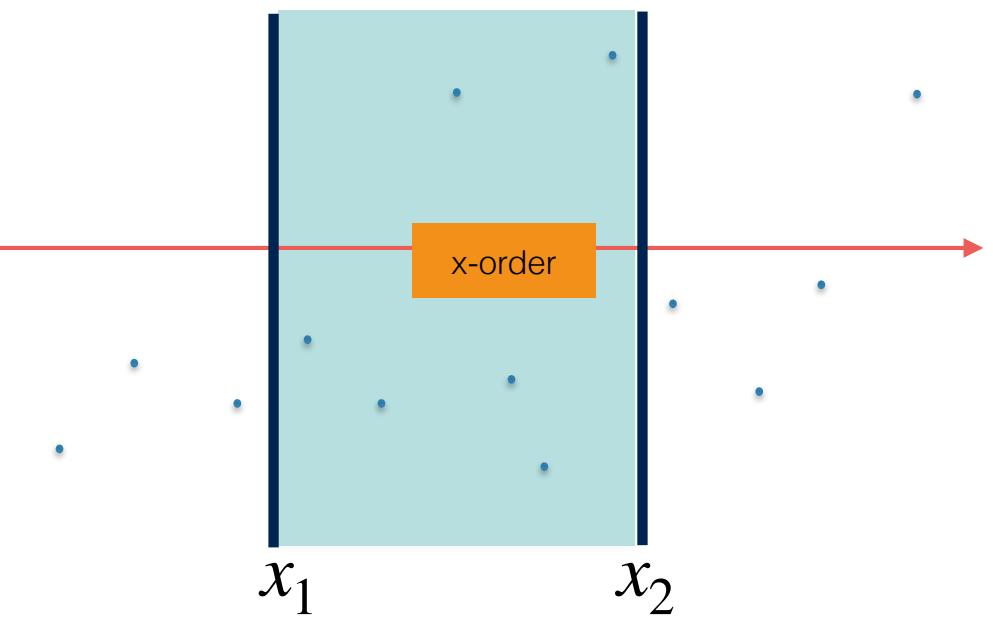
- Build BBST by x-coord
- Range queries: find all points in $[x_1, x_2] \times [y_1, y_2]$
 - Use BBST to find **all points with the x-coordinates in $[x_1, x_2]$**
 - Traverse these points and **find those with y-coord in $[y_1, y_2]$**

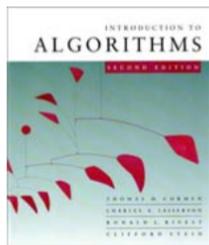


Slow if n' is large but k is small

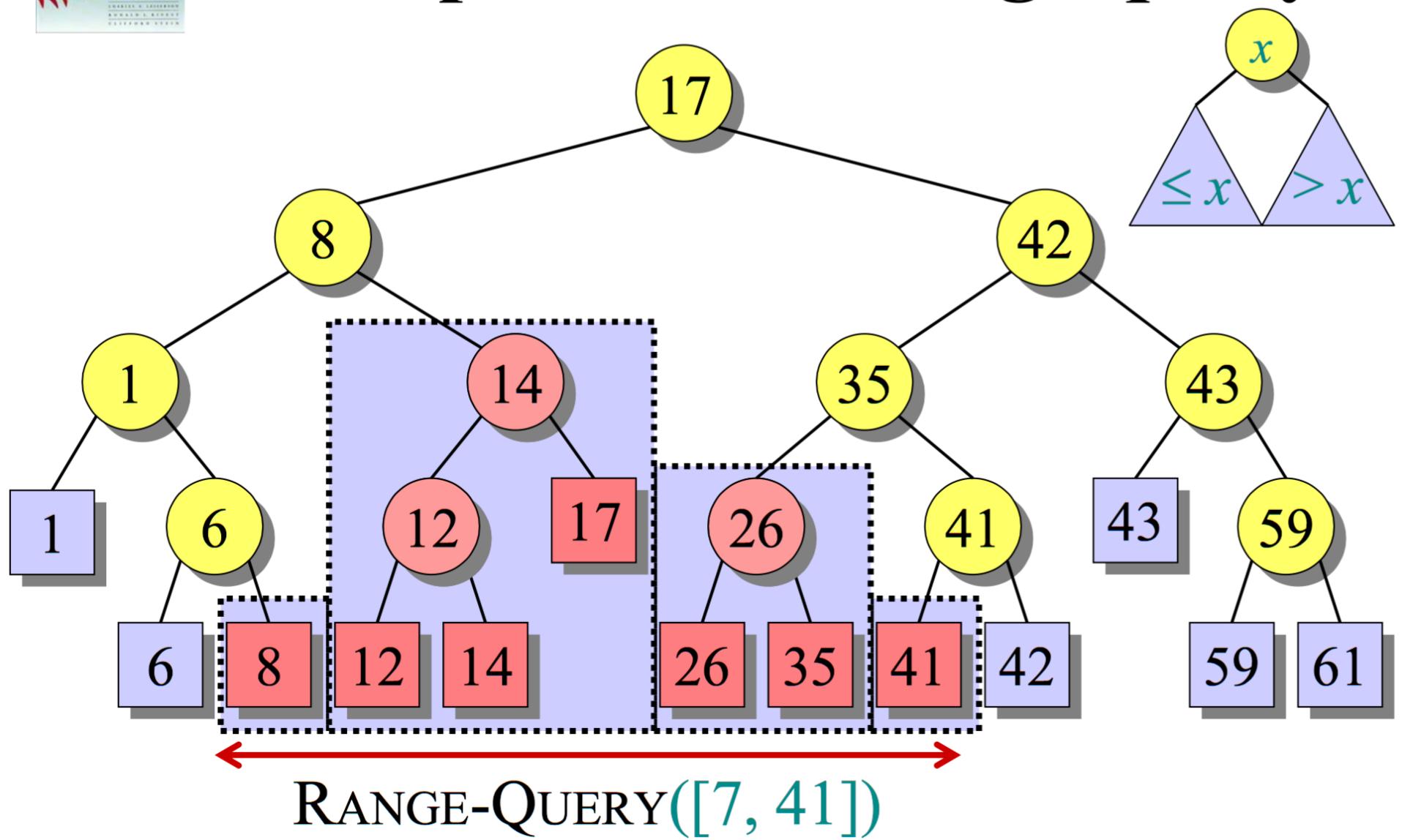
A closer look

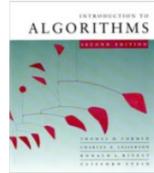
- Use BBST to find all points with **the x-coordinates in $[x_1, x_2]$**



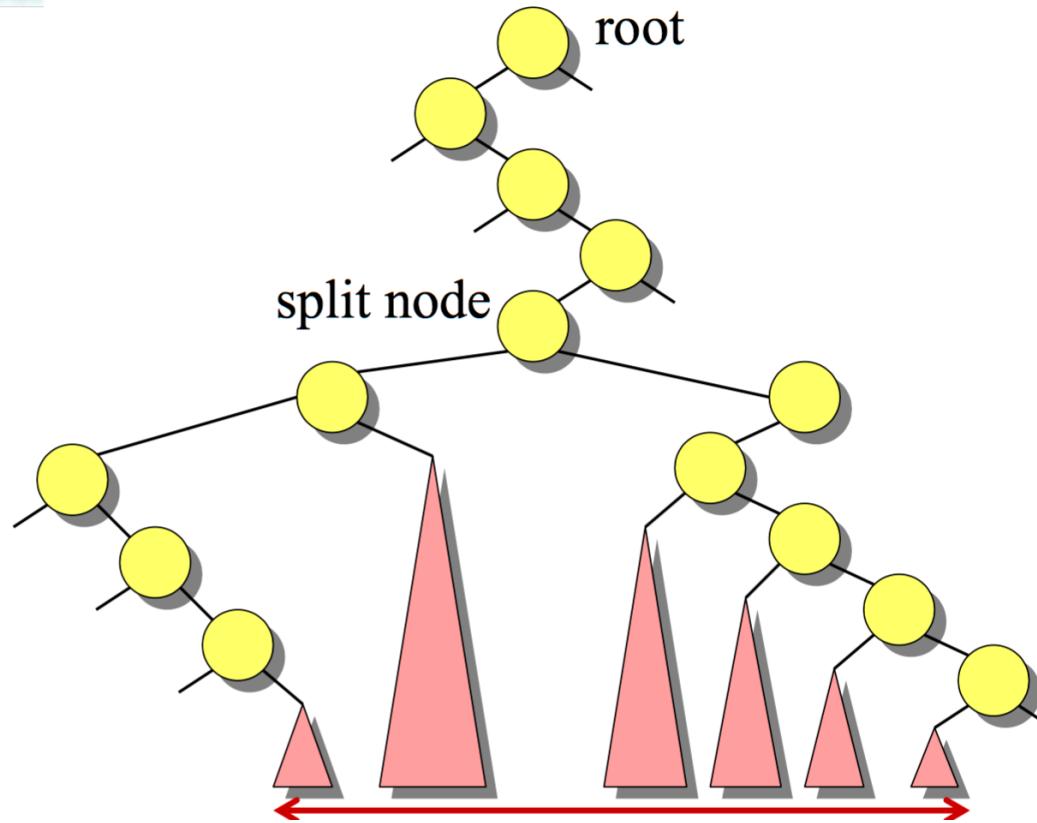


Example of a 1D range query





General 1D range query

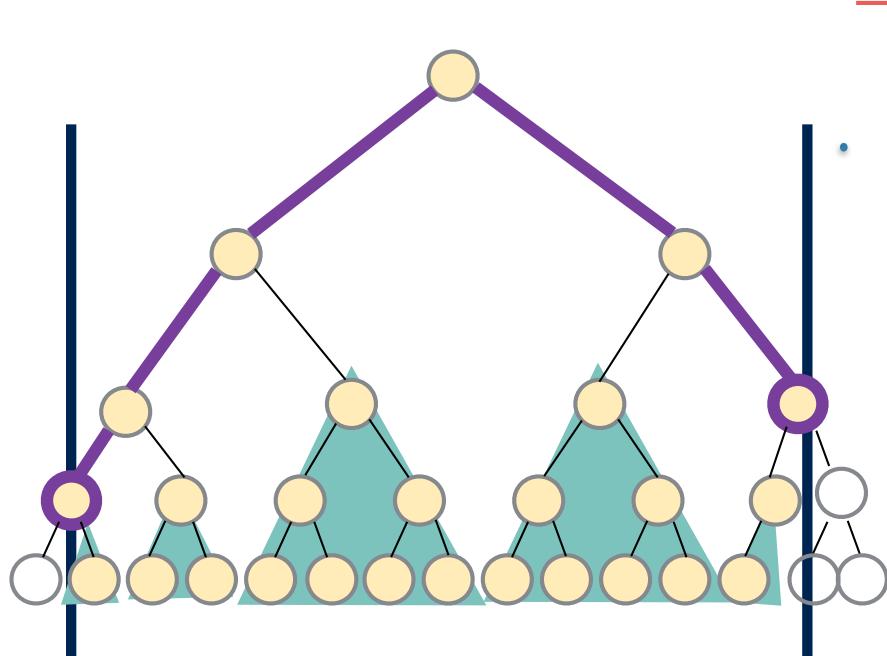
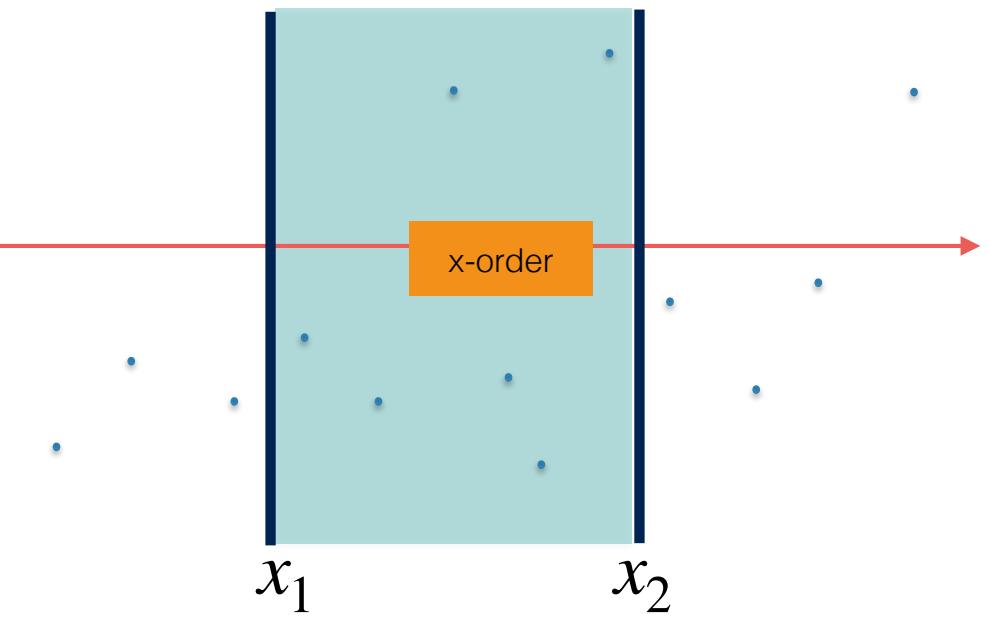


The k points in the range sit in $O(\lg n)$ subtrees

A closer look

- Use BBST to find all points with **the x-coordinates in $[x_1, x_2]$**

The points in $[x_1, x_2]$ sit in $O(\lg n)$ subtrees



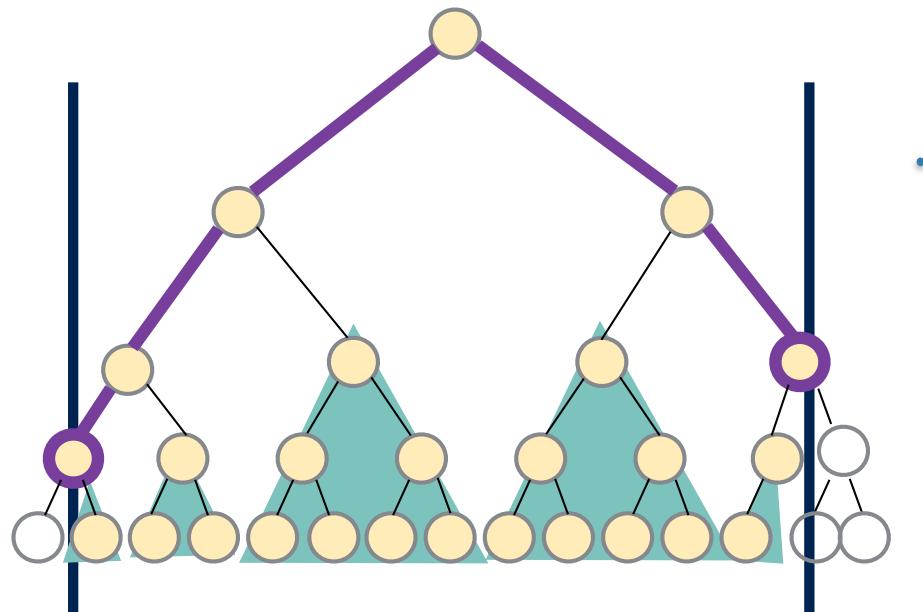
A closer look

- Use BBST to find all points with **the x-coordinates in $[x_1, x_2]$**

The points in $[x_1, x_2]$ sit in $O(\lg n)$ subtrees

- Of all these points, we need those with **the y-coordinates in $[y_1, y_2]$**

For each subtree we need all points in $[y_1, y_2]$



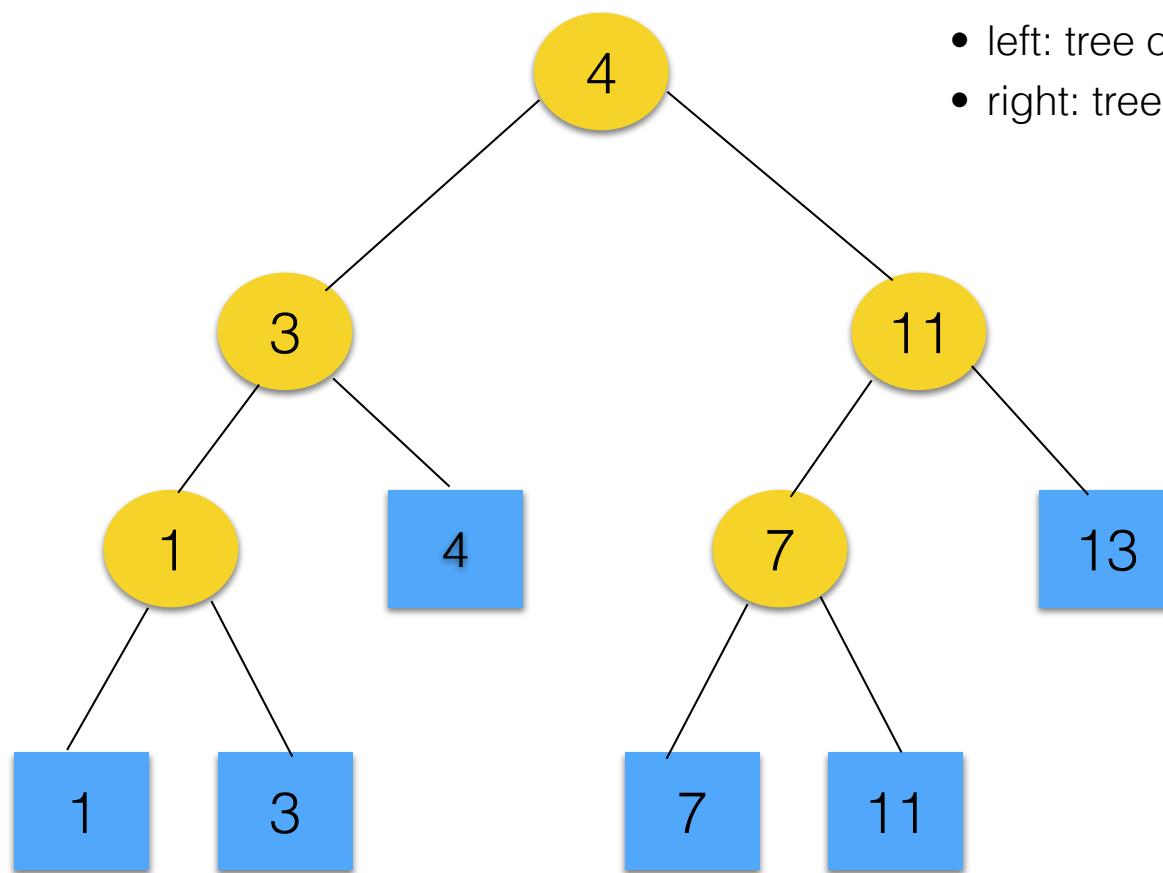
For each of these subtrees
we'll build data structure for
searching on y-coord

What is a good data structure for
searching on y?
A BBST by y-coord!

BBST

- We'll use a variant of BBSTs that store all data in leaves (it makes details simpler)

Example: $P = \{ 1, 3, 4, 7, 11, 13 \}$



- root: median of P
- left: tree of first half
- right: tree of second half

Class work

- Show the BBST with all data in leaves for $P = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- Write pseudocode for the algorithm to build $\text{BBST}(P)$
 - root: median of P
 - left: tree of first half
 - right: tree of second half

```
//P: a set of keys
//create BBST of P with all keys in leaves and return its root
buildBBST ( P )
```

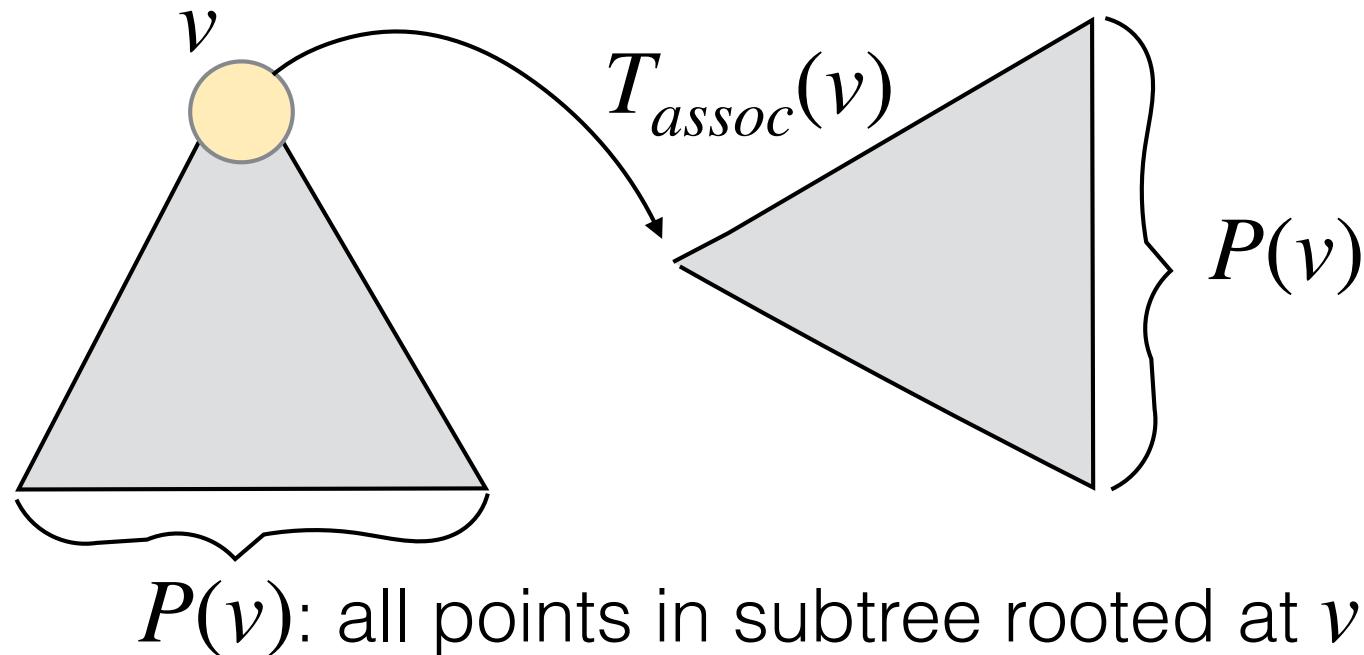
- Running time analysis in general.
- Running time analysis if P is given sorted.

And finally, the 2D Range Tree!

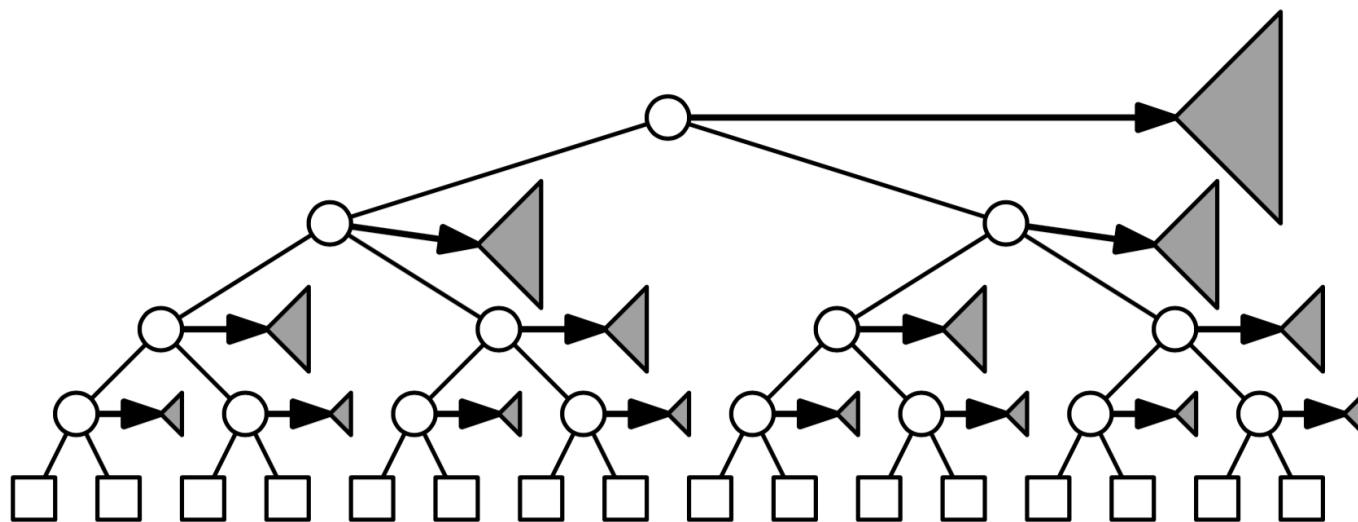
P : set of points

$\text{RangeTree}(P)$ is

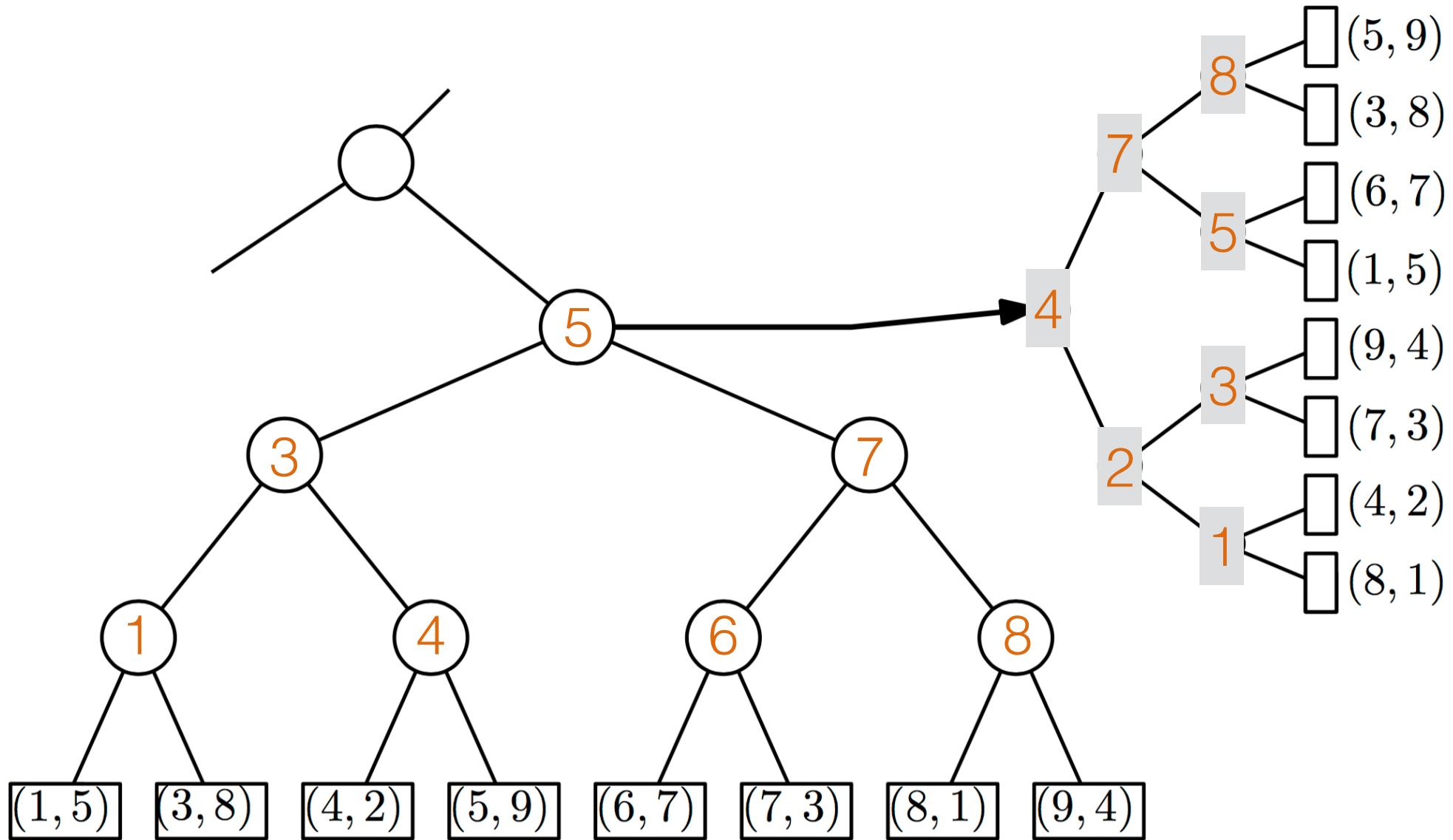
- A BBST T of P ordered by x -coord
- Each node v in T stores an associated structure $T_{assoc}(v)$ that's a BBST of $P(v)$ ordered by y -coord



Every internal node stores a whole tree in an *associated structure*, on y -coordinate



screen shot from Mark van Kreveld slides, <http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf>)



The 2D Range Tree

Questions

- How to build one and how fast?
- How much space does it use?
- How to answer range queries and how fast?

Building a 2D Range Tree

```
// param:  $P$  is an array of points
// return: builds the 2d-range tree for  $P$  and returns its root
```

Build2DRT(P)

1. if P contains only one point:
 - create a leaf v storing this point, (create its T_{assoc} which is just leaf) and return v
2. else
 - Construct the associated structure:
 - $root_{assoc} = \text{buildBBST}(P)$ // ordered by the y-coordinates
 - Partition P into 2 sets w.r.t. the median coordinate x_{middle} :
 - $P_{\text{left}} = \{p \text{ in } P \text{ with } p_x \leq x_{\text{middle}}\}$, $P_{\text{right}} = \{p \text{ in } P \text{ with } p_y > x_{\text{middle}}\}$
 - $v_{\text{left}} = \text{Build2DRT}(P_{\text{left}})$
 - $v_{\text{right}} = \text{Build2DRT}(P_{\text{right}})$
 - Create a node v
 - $v.x = x_{\text{middle}}$
 - $v.left = v_{\text{left}}$
 - $v.right = v_{\text{right}}$
 - $v.assoc = root_{assoc}$

Building a 2D Range Tree

Running time:

- Let $T(n)$ be the time of **Build2DRT(P)** , on a set P of n points
- $T(n)$ consists of:
 - building the associated structure, a BBST on n keys: $O(n \lg n)$ (if P not sorted by y)
 - finding the median and partition: $O(n)$
 - two recursive calls
- Overall $T(n) = 2T(n/2) + O(n \lg n)$
 - This solves to $T(n) = O(n \lg^2 n)$
- Remember our trick?

Building a 2D Range Tree

- Common trick: pre-sort P and pass it as argument

```
// $P_x$  is set of points sorted by x-coord  
// $P_y$  is set of points sorted by y-coord  
Build2DRT( $P_x, P_y$ )
```

- Maintain the sorted sets through recursion

$$P_{left\text{-sorted-by-}x}, P_{left\text{-sorted-by-}y},$$
$$P_{right\text{-sorted-by-}x}, P_{right\text{-sorted-by-}y}$$

- If the keys are in order, a BBST can be built in $O(n)$
- We have $T(n) = 2T(n/2) + O(n)$ which solves to $O(n \lg n)$

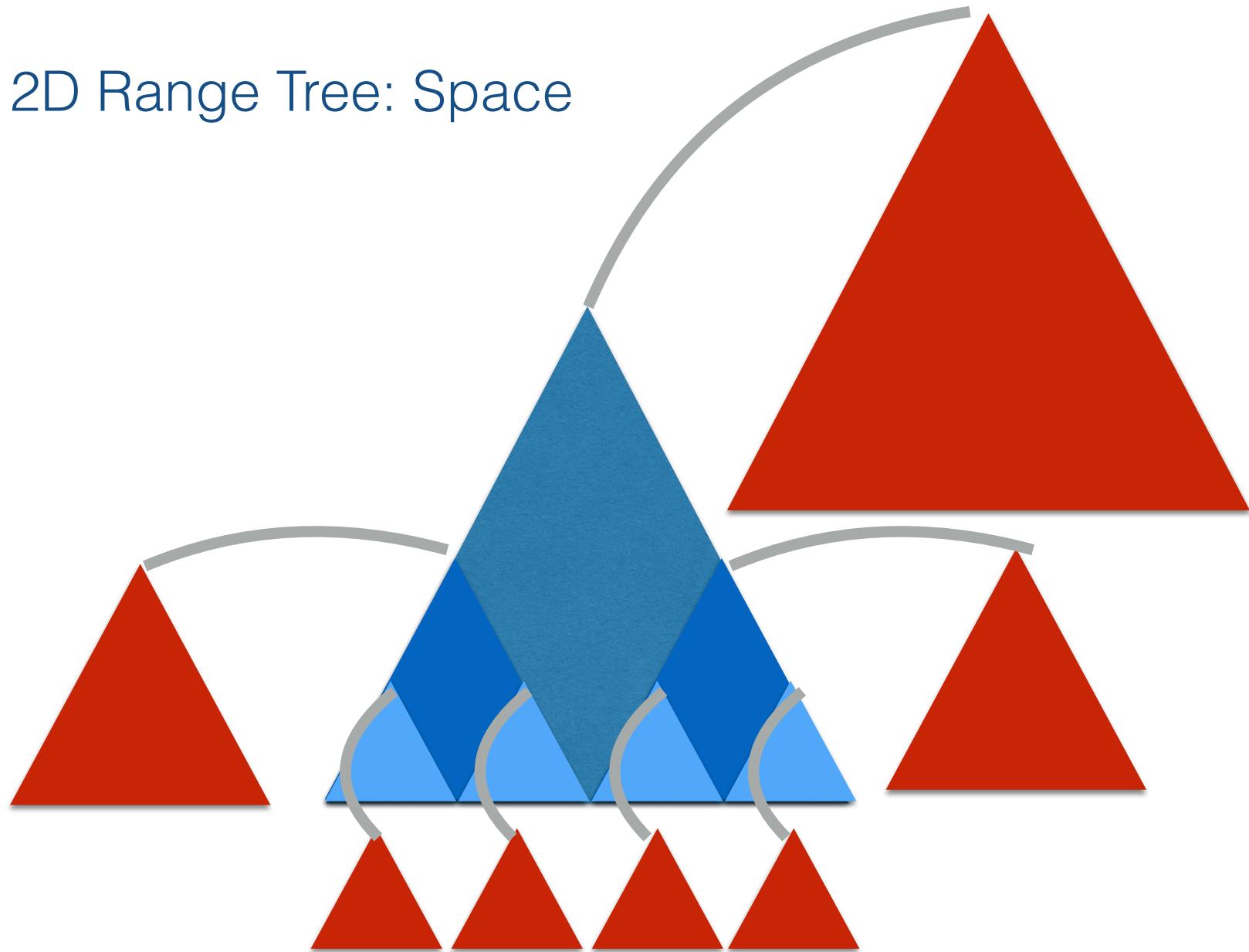
Theorem: A 2d-range tree for a set of n points can be built in $\Theta(n \lg n)$ time.

Class work

Show the range tree for

$$p_1 = (1,4), p_2 = (5,8), p_3 = (4,1), p_4 = (7,3), p_5 = (3,2), p_6 = (2,6), p_7 = (8,7)$$

The 2D Range Tree: Space



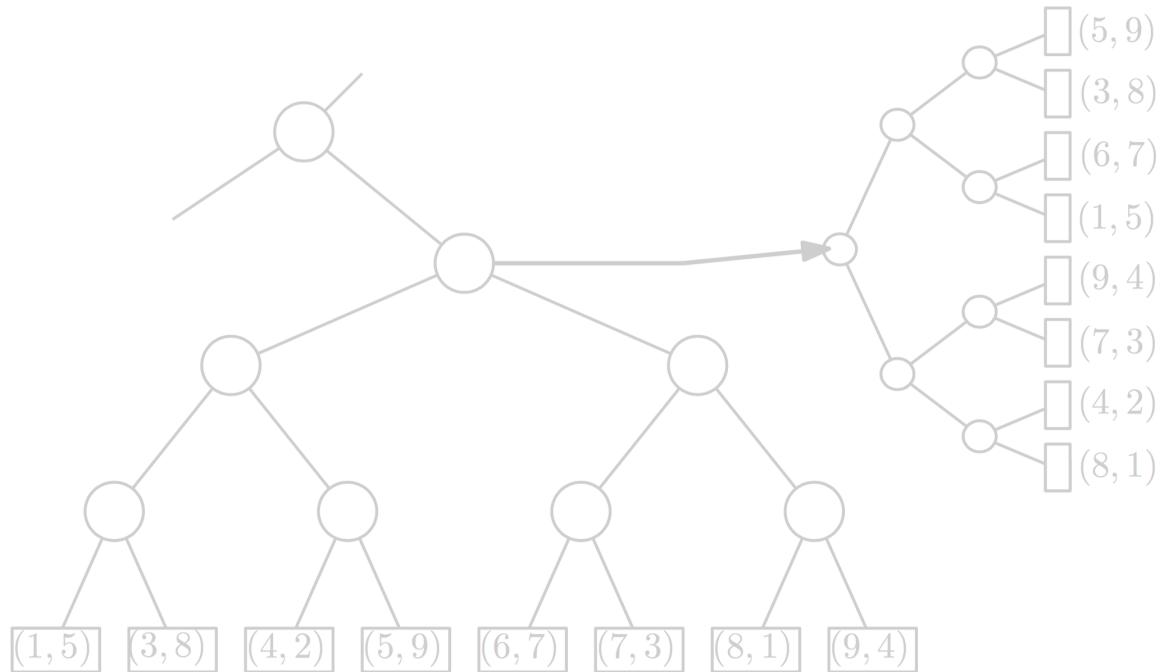
The 2D Range Tree: Space

Theorem: A 2d-range tree for a set of n points in the plane has $\Theta(n \lg n)$ size.

Two arguments:

- At each level in the tree, each point is stored exactly once (in the associated structure of precisely one node). So every level stores all points and uses $O(n)$ space $\Rightarrow O(n \lg n)$

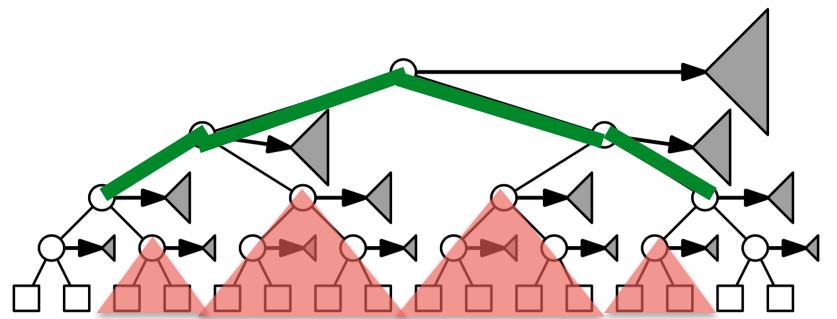
Or: Each point p is stored in the associated structures of all nodes on the path from root to p . So one point is stored $O(\lg n)$ times $\Rightarrow O(n \lg n)$



Range queries with the 2D Range Tree

- Find the split node x_{split} where the search paths for x_1 and x_2 split
- Follow path root to x_1 : for each node v to the **right** of the path, query its associated structure $T_{\text{assoc}}(v)$ with $[y_1, y_2]$
- Follow path root to x_2 : for each node v to the **left** of the path, query its associated structure $T_{\text{assoc}}(v)$ with $[y_1, y_2]$
- (Also, while traversing these paths, check and report the nodes on the path)

Every internal node stores a whole tree in an *associated structure*, on y -coordinate

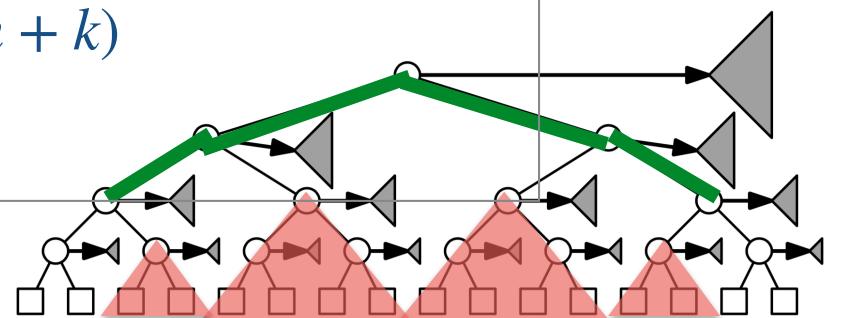


How long does this take?

Range queries with the 2D Range Tree

- There are $O(\lg n)$ subtrees in between the paths
- We query each one of them using its associated structure
- Querying T_{assoc} takes $O(\lg n_v + k')$
- Overall it takes $\sum O(\lg n_v + k') = O(\lg^2 n + k)$

Every internal node stores a whole tree in an *associated structure*, on y -coordinate



n_v : number of points in T_{assoc}

k' : number of points in T_{assoc} that are in $[y_1, y_2]$

Theorem: A 2d-range tree for a set of n points answers range queries in $O(\lg^2 n + k)$ time.

We like logs!! Also, it is known how to improve this to $O(\lg n + k)$ time.

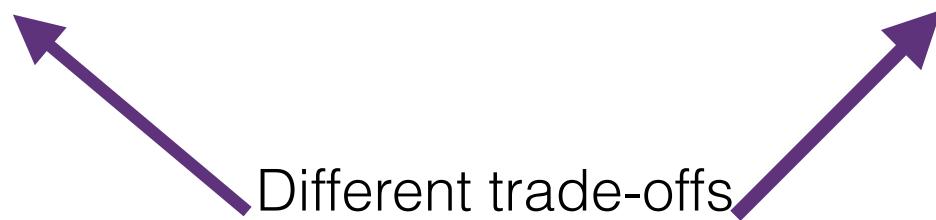
1D

- Balanced BinarySearchTree
 - Build: $O(n \lg n)$
 - Space: $O(n)$
 - Range queries: $O(\lg n + k)$

2D

- kd-trees
 - Build: $O(n \lg n)$
 - Space: $O(n)$
 - Range queries: $O(\sqrt{n} + k)$

- Range trees
 - Build: $O(n \lg n)$
 - Space: $O(n \lg n)$
 - Range queries: $O(\lg n + k)$



Different trade-offs

Kd-tree vs Range Tree: Does it really matter?

in 2D

n	$\log n$	$\log^2 n$	\sqrt{n}
16	4	16	4
64	6	36	8
256	8	64	16
1024	10	100	32
4096	12	144	64
16384	14	196	128
65536	16	256	256
1M	20	400	1K
16M	24	576	4K

YES!

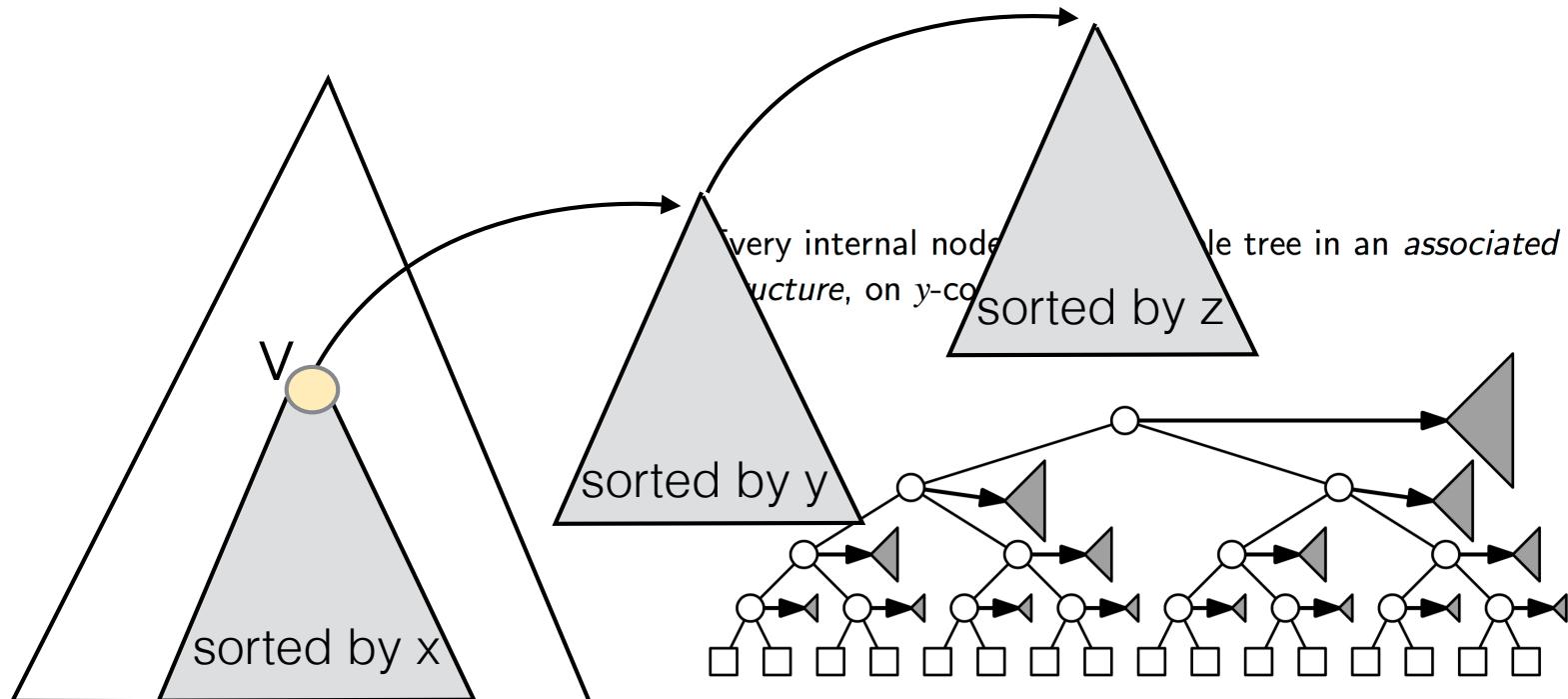
Range-trees generalize easily to d-dimensions

3D Range Trees

P : set of points in 3D

$\text{3DRangeTree}(P)$ is

- A BBST T of P ordered by x -coord
- Each node v in T stores an associated structure T_{assoc} that's a 2D range tree for $P(v)$



3D Range Trees

Build time: $O(n \lg^2 n)$

- Think recursively
- Let $B_3(n)$ be the time to build a 3D Range Tree of n points
- Find a recurrence for $B_3(n)$
 - Think about how we build it : we build an associated structure for P that's a 2D range tree; then we build recursively a 3D range tree for the left and right half of the points
 - $B_3(n) = 2B_3(n/2) + B_2(n)$
 - This solves to $O(n \lg^2 n)$

3D Range Trees

Size: $O(n \lg^2 n)$

- Why? we can think of this in two ways:
- An associated structure for n points uses $O(n \lg n)$ space. Each point is stored in all associated structures of all its ancestors $\Rightarrow O(n \lg^2 n)$
- Or, recursively
 - Let $S_3(n)$ be the size of a 3D Range Tree of n points
 - Find a recurrence for $S_3(n)$
 - We build an associated structure for P that's a 2D range tree; then we build recursively a 3D range tree for the left and right half of the points
 - $S_3(n) = 2S_3(n/2) + S_2(n)$
 - This solves to $O(n \lg^2 n)$

3D Range Trees

Query:

- Query BBST on x-coord to find $O(\lg n)$ nodes (roots of subtrees)
- Then perform a 2D range query in each node

Time:

- Let $Q_3(n)$ be the time to answer a 3D range query
- Find a recurrence for $Q_3(n)$
 - $Q_3(n) = O \lg n + O(\lg n) \times Q_2(n)$
 - This solves to $O(n \lg^3 n + k)$

Kd-tree vs Range Tree

4D

n	$\log n$	$\log^4 n$	$n^{3/4}$
1024	10	10,000	181
65,536	16	65,536	4096
1M	20	160,000	32,768
1G	30	810,000	5,931,641
1T	40	2,560,000	1G

screen shot from Mark van Kreveld slides, <http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf>

Class work

Show the 3D-range tree for the the set of points below:

