
Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Geometric range searching

Techniques

• divide-and-conquer

• incremental

• space decomposition

• plane sweep

• …

“Global” problems

• closest pair

• convex hull

• intersections

• ..

next

Geometric search problems

• range searching

• nearest neighbor

• k-nearest neighbor

• find all roads within 1km of

current location

• ..

Where we are

We start with1D range searching

1D Range searching

2 15

Given a set of n points on the real line and an interval [a,b], find all points in [a,b]

find all values in [2,15]

Assume first that the points are fixed, i.e. don’t change.

What can we do?

1D Range searching

2 15

Assume now that the points are dynamic, i.e. in addition to range queries, we

want to be able to insert and delete points.

Given a set of n points on the real line and an interval [a,b], find all points in [a,b]

• A set of n points in 1D can be pre-processed into a BBST such that:

• Build:

• Space:

• Range queries:

• Dynamic: points can be inserted/deleted in

O(n lg n)
Θ(n)

O(lg n + k)
O(lg n)

1D Range searching

The k points in the range sit in O(lg n) subtrees

• A set of n points in 1D can be pre-processed into a BBST such that:

• Build:

• Space:

• Range queries:

• Dynamic: points can be inserted/deleted in

O(n lg n)
Θ(n)

O(lg n + k)
O(lg n)

1D Range searching

2D Range searching

Given a set of n points in 2D and an arbitrary range , find all
points in this range

[x1, x2] × [y1, y2]

x1 x2

y1

y2

2D Range searching

2D Range searching

Searching is a fundamental operation. This is the multi-dimensional version of the “report all points in this
interval”

Interestingly, it comes up in settings that are not geometrical

Why range searching?

brightness

temperature
Find all stars with brightness

and temperature within a given
interval

e.g. Database of stars. A star = (brightness, temperature,……)

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

e.g. Database of employees. An employee = (age, salary,……)

Why range searching?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Why range searching?

3d-range searching, etc

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

2D Range searching

Given a set of n points in 2D and an arbitrary range , find all
points in this range

[x1, x2] × [y1, y2]

x1 x2

y1

y2

Build a structure to

answer this efficiently

• A set of n points in 2D can be pre-precessed in a ??2d-BBST??? such that

• Build:

• Space:

• Range queries:

O(n lg n)
Θ(n)

O(lg2 n + k)

2D

These bounds would be nice
But how?

1D
• A set of n points in 1D can be pre-processed into a BBST such that:

• Build:

• Space:

• Range queries:

• Dynamic: points can be inserted/deleted in

O(n lg n)
Θ(n)

O(lg n + k)
O(lg n)

2D Naive Approach

The naive approach: just traverse and check in O(n)

Analysis:

Build: none

Space: none

2d range query: O(n) We want O(lg2 n + k)

• n: size of the input (number of points)

• k: size of output (number of points inside range)

Points are static or dynamic?

We’ll assume static (it’s hard enough)

1. Find all points with the x-coords in [x1, x2]

How about this:
query [x1, x2] x [y1, y2]

x1 x2

y2

y1

2. Traverse these points and find those
with y-coord in [y1, y2]

• This works, but it’s worst case is slow

• to find the points in the vertical strip, and then to traverse and find the points in O(lg n + k′￼) O(k′￼) [y1, y2]

x1 x2

BBST in x-order

• The problem is that the nb. of points in can be large, and the nb. of
points in may be small

[x1, x2]
[x1, x2] × [y1, y2]

• Worst case: k′￼= n, k = 0

to find the points in this
range takes

 timeO(lg n + n) = O(n)

Searching via space partition structures
We’ll partition the space, store it in a data structure and use it to speed up searching

the grid heuristic

kd-trees

range-trees

First, let’s look in 1D:

The BBST as a space partition structure

16

A BST creates an implicit space partition

left tree represents all
values <=16

right tree represents all
values >16

16

First, let’s look in 1D: The BST as a space partition structure

16

7 20

167 20

• To search for a value we need to
find the region of space that
would contain this value

A BST creates an implicit space partition

First, let’s look in 1D: The BST as a space partition structure

Using a BST on 2d points

Partitions the space in vertical/horizontal stripes

(16, 3)

(7, 50) (20, 5)

x- order

(20, 5)

(16, 3)
(7, 50)

y- order

(x,y) order

We have to search all vertical strips that intersect the range, which could
have a lot of points outside the range.

Not a good partition for range-searching!

The simplest space decomposition is a grid

The grid

• Build: O(n)

• Space: O(n)

2D range searches with a grid

x1 x2

y1

y2

• 2d range queries: traverse all cells that intersect the range

• Exact bound depends on how many points are in the cells

• Choose grid size and hope for points per cell. In this case, a range query takes

• Worst case is bad: points are not uniformly distributed, a range query could take even if no

points are reported

m = O(n) O(1)
O(k)

O(n)

+ Simple to implement

+ Perform well if points are uniformly distributed

+ Can be used for many other problems besides range searching (e.g. closest

pair, neighbor queries)

- Gridding gives no guarantee on bounds. It’s an heuristic.

The grid method

kd-trees
k-dimensional search trees

Next we’ll see two structures that extend the BST

screen shot from Mark van Kreveld, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

3

5

1 4

7

6 8

2

7

4

1

3

5

8
range-trees

