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Where we are

Geometric search problems

“Global” problems e range searching

* closest pair * nearest neighbor

* convex hull * k-nearest neighbo

* intersections « find all roads within\1km of

. current location
Techniques

 divide-and-conquer

incremental

space decomposition < next

plane sweep



We start with1D range searching



1D Range searching

Given a set of n points on the real line and an interval [a,b], find all points in [a,b]

> 15

find all values in [2,15]

Assume first that the points are fixed, i.e. don’t change.

What can we do?



1D Range searching

Given a set of n points on the real line and an interval [a,b], find all points in [a,b]

Assume now that the points are dynamic, i.e. in addition to range queries, we

want to be able to insert and delete points.



1D Range searching

* A setof npoints in 1D can be pre-processed into a BBST such that:
e Build: O(nlgn)
« Space: O(n)
« Range queries: O(lgn + k)

« Dynamic: points can be inserted/deleted in O(lg n)

“«" General 1D range query

S >

The k points in the range sit in O(Ig n) subtrees



1D Range searching

* A setof npoints in 1D can be pre-processed into a BBST such that:
e Build: O(nlgn)
« Space: O(n)
« Range queries: O(lgn + k)

« Dynamic: points can be inserted/deleted in O(lg n)



2D Range searching

Given a set of n points in 2D and an arbitrary range [x;, X,] X [y;, ¥,], find all
points in this range
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2D Range searching




2D Range searching




Why range searching?

Searching is a fundamental operation. This is the multi-dimensional version of the “report all points in this
interval”

Interestingly, it comes up in settings that are not geometrical

e.g. Database of stars. A star = (brightness, temperature,...... )
temperature
4 ' Find all stars with brightness
* @ and temperature within a given
- interval
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Why range searching?

e.g. Database of employees. An employee = (age, salary,...... )

G. Ometer
born: Aug 16, 1954
salary salary: $3,500

A database query may ask for . v .
all employees with age . -

between a; and a;, and salary .
between s; and s>

19,500,000 19,559,999
date of birth

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slidesb5a.pdf



http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Why range searching?

3d-range searching, etc

I
Example of a 3-dimensional 4,000 /‘I ikl
(orthogonal) range query: R R
children in [2, 4], salar}{ in- 30000 1
[3000, 4000], date of birth in A
119,500,000, 19,559,999] of

19,500,000 19.559,999

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf



http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

2D Range searching

Given a set of n points in 2D and an arbitrary range [x;, X,] X [y;, ¥,], find all
points in this range




1D

* A setof npoints in 1D can be pre-processed into a BBST such that:
e Build: O(nlgn)
« Space: O(n)
« Range queries: O(lgn + k)

« Dynamic: points can be inserted/deleted in O(lg n)

2D

* A set of n points in 2D can be pre-precessed in a ?7?2d-BBST777 such that
o Build: O(nlgn)

These bounds would be nice
« Space: ®(n)

?
. Range queries: O(1g”n + k) But how"



 n: size of the input (number of points)

* k: size of output (number of points inside range)

2D Naive Approach
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Points are static or dynamic?
& & We’'ll assume static (it's hard enough)
&
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The naive approach: just traverse and check in O(n)
Analysis:
Build: none
Space: none

2d range query: O(n) «—— We want O(Ig2 n+k)



How about this:

1. Find all points with the x-coords in [x1, X2]

@
BBST in x-order .
/(i)\root °®
split node O

O

° @

@
<@
X1 X2

e This works, but it's worst case is slow

query [x1, X2] x [y1, y2]

2. Traverse these points and find those
with y-coord in [y1, y2]

« O(lgn + k) to find the points in the vertical strip, and then O(k’) to traverse and find the points in [y;, ¥,]



« The problem is that the nb. of points in [x;, X,] can be large, and the nb. of
points in [x,X,] X [y, ¥,] may be small

« Worstcase: k' =n, k=0

to find the points in this
range takes
° O(gn + n) = O(n) time



Searching via space partition structures

We'll partition the space, store it in a data structure and use it to speed up searching

the grid heuristic
kd-trees

range-trees



First, let’s look in 1D:

The BBST as a space partition structure



First, let’s look in 1D: The BST as a space partition structure

left tree represents all right tree represents all
values <=16 values >16

/ \ / \ A BST creates an implicit space partition
1
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First, let’s look in 1D: The BST as a space partition structure

A BST creates an implicit space partition
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/ \ e To search for a value we need to
//\ find the region of space that
would contain this value

-



Using a BST on 2d points

' |
B S .
. . . O
. o, . : g
VAN e
: z PEEN
1 1 \/
] 1 < . —
[ 1 . c'> """""""
| 1 8_; ~_
/N /N /NN B s
AN AN AN AL ANA VAN ~
| CHC W o R
A ~
v -
...................................... > -

X- order

Partitions the space in vertical/horizontal stripes



Not a good partition for range-searching!

(x,y) order

We have to search all vertical strips that intersect the range, which could
have a lot of points outside the range.



The grid

The simplest space decomposition is a grid

o Build: O(n)
e Space: O(n)



2D range searches with a grid
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2d range queries: traverse all cells that intersect the range

Exact bound depends on how many points are in the cells

Choose grid size m = O(\/Z) and hope for O(1) points per cell. In this case, a range query takes
O(k)
Worst case is bad: points are not uniformly distributed, a range query could take O(n) even if no

points are reported



The grid method

+ Simple to implement
+ Perform well if points are uniformly distributed

+ Can be used for many other problems besides range searching (e.g. closest

pair, neighbor queries)

- Gridding gives no guarantee on bounds. It's an heuristic.



Next we’ll see two structures that extend the BST

e

kd-trees ‘

kK-dimensional search trees




range-trees
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