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Combinatorial motion planning

1. Point robot among obstacles in 2D



screenshot from: ai.stanford.edu/~latombe/cs26n/2012/slides/point-robot-bug.ppt

Motion planning



Motion Planning 

Parameters: 

• physical space (2d, 3d) 

• geometry of obstacles (polygons, disks, convex, non-convex, etc)

• geometry of robot (point, polygon, disc) 

• robot movement —how many degrees of freedom (dof);  2d, 3d

• objective function to minimize (euclidian distance, nb turns, etc)

• static vs dynamic environment 

• exact vs approximate path planning  

• known vs unknown map 

Input:   
• a robot R 
• start and end position
• a set of obstacles S = {O1, O2,…}

Find a path from start to end (that optimizes some objective function).



• A planner is complete:   it always finds a path when a path exists

• A planner is optimal:  it finds an optimal path (wrt an objective function) 

Ideally we want a planner to be complete and optimal.

algorithm that finds a path

Motion Planning 



• point robot moving among (arbitrary) polygons in 2D


• polygonal robot moving among (arbitrary) polygons in 2D


• translation only 


• translation+rotation


• ….


• robot with arms and articulation moving in 3D

harder

Path planning problems
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Approaches

• Combinatorial (exact)

• Used for path planning in 2D 

• Idea: 

• Compute an exact representation of free space as a graph 

• Find a path using the graph

• Approximate

• Used for higher dimensional planning 

• Idea: 

• sample and approximate free space



1. Point robot moving in 2D
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Point robot in 2D

Input:   
• start and end position
• a set of polygonal obstacles S = {O1, O2,…}

Find a path from start to end.



Point robot in 2D

• Questions: How? How long? Size?

(screenshot from O’Rourke)

General idea

• Build a graph that represents 
movement through the free space

• based on trapezoid 
decomposition  of free space

• Search graph to find path    



Let’s consider the following scene. Show a trapezoid decomposition of free space and 
the corresponding graph (“roadmap”).



• Compute a trapezoid partition of free space 

• Build graph of free space 

• Search graph to find path    

• Big idea: Path planning for point robot in 2D reduces to graph search in the 

“free space” graph

Point robot in 2D

Has size  and can be 
computed  in  time

O(n)
O(n lg n)

Has size  and can be 
computed in  time

O(n)
O(n)

BFS or DFS in  timeO(n)

   = 	complexity of obstacles 

	 (total number of edges) 
n

Result:  Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in 

total.  We can pre-process the scene in O(n lg n) expected time such that, between any start and 

goal position, a collision-free path for R can be computed in O(n) time, if it exists. 



Is this complete? Is this optimal?

YES No

Point robot in 2D



Theorem: 
Any shortest path among a set S of disjoint 
polygonal obstacles:  

1.  is a polygonal path (that is, not curved)
2.  its vertices are the vertices of S. 

p
p

What if we wanted an optimal path? 



• Idea: Since the vertices of any shortest path are the vertices of S, build a graph that 
represents all possible ways to travel between the vertices of the obstacles 

• V = {set of vertices of obstacles +  + }

• E = {all pairs of vertices   such that  are visible to each other (and not 
inside a polygon)

• Claim:  any shortest path must be a path in the VG 

pstart pend

(vi, vj) vivj

Visibility graph 

Path planning:

• Compute visibility graph 

• SSSP (Dijkstra) in VG from  to pstart pend



Visibility graph 

• V = {set of vertices of obstacles +  + }

• E = {all pairs of vertices   such that  are visible to each other (and not inside a 
polygon)

pstart pend

(vi, vj) vivj







these edges outside the polygon 
but inside the convex hull have to 

be include in the VG



   = 	complexity of obstacles 

	 (total number of edges) 
n

Computing the Visibility Graph 

• Running time: 
• Size of visibility graph: 

• nb of vertices 

• nb of edges: 

O(n3)

V : n + 2 = Θ(n)
Ω(n), O(n2)

• Straightforward: 
• V = {set of vertices of obstacles +  + }
• for each vertex :  

• for each vertex : 
• if segment  does not intersect any edges of the polygon properly  AND   

 is NOT interior to a polygon:   add  as an edge 

pstart pend

u
v

uv
uv uv

• Notes: 
• the edges of the polygons must be in the VG
• interior edges: use inCone( ) to determine if  is in the cone of a, b b a−aa+



• Computing the visibility graph 

•  straightforward 

•  improved 

• Dijkstra in VG   

•  

O(n3)
O(n2 lg n)

O( |E | lg n)

Optimal planning for point robot in 2D
   = 	complexity of obstacles 


	 (total number of edges) 
n

Path planning:
• Compute visibility graph 

• SSSP (Dijkstra) in VG from  to pstart pend

can have quadratic size



Dijkstra(vertex s) 


• initialize


• dist[v] =  , pred[v] = null for all v, dist[s] = 0


• for all v: PQ.insert(<v, dist[v]>)


• while PQ not empty 


•  = PQ.deleteMin() 


• done[u] = true


• for each edge (u,v),   if v not done: 


• alt = dist[u] + edge(u,v) 


• if alt < dist[v]  


• dist[v] = alt,  pred[v] = u, PQ.decreasePriority(v, dist[v])

∞

(u, dist[u])

requires a structure that can search, or a PQueue with additional book-keeping

• Data structures
• PQ of  with decreaseKey()
• for all vertices : , pred[u], 

(u, dist[u])
u dist[u] done[u]

//claim: dist[u] is the shortest path from s to u

not all pqueues support it



Dijkstra(vertex s) 


• initialize


• dist[v] =  , pred[v] = null for all v, dist[s] = 0


• PQ.insert(<s, dist[s]>)


• while PQ not empty 


• (u, dist[u])  = PQ.deleteMin()


• if u not done, for each edge (u,v),  if v not done 


• alt = dist[u] + edge(u,v)


• if alt < dist[v]


• dist[v] = alt, perd[v]=u,  PQ.insert(<v, dist[v]>)


• done[u]=true

∞

1: insert only the start

2. insert it

(even if it’s already there)

Because we don’t decreaseKey, 

PQ may contain the same vertex 


with different dist[]. We process u only 

the first time we see it 

PQ of  without  decreaseKey()(u, dist[u])Improvement/simplification



Computing the visibility graph in O(n2 lg n)



• For every vertex v:  compute all vertices visible from v in O(n lg n)

Improved computation of VG

v

radial sweep



Improved computation of VG

• Radial sweep: rotate a ray centered at v


• Events: vertices of polygons (obstacles) sorted in radial order


• events of equal angle, sorted by distance from v

12

3

v
Θ(vi) = tan−1 yi − yv

xi − xv



VG via line sweep 

v

radial sweep

1

2
3

45

6

7

• Radial sweep: rotate a ray centered at v


• Events: vertices of polygons (obstacles) sorted in radial order


• events of equal angle, sorted by distance from v



Active structure (AS) stores all  the edges that intersect the sweep line, 

ordered by distance from v 

v

VG via line sweep 



RadialSweep(polygon vertices V, vertex p)


• sort V radially from p, and secondarily  by distance from p


• initialize AS with all edges that intersect the horizontal ray from p


• For each vertex v in sorted order:


• use AS to determine if v is visible from p


• figure out if the edges incident to v are above/below the sweep line. 

If above -> insert edge in AS. If below => delete edge from AS 

Runs in  time

Repeat for all vertices p ==> 

O(n lg n)
O(n2 lg n)

VG via line sweep 

//find all vertices visible from a vertex p



v

w

w visible if vw does not intersect the interior of any obstacle

VG via line sweep 



p x
NOT visible

p x
NOT visible

x is NOT visible:

Is vertex x visible from p? some cases

If there is any edge in AS left  of x, 
whose interior intersects the line

p x
visible



p xx’

x’is a vertex and it’s visible

p x

NOT visible

x’
NOT 

visible
NOT 

visible

Is vertex x visible from p?

Let x’ be the edge just before x in the AS,   x’ = AS.predecessor(x)

p xx’

x’is a vertex and it’s not visiblex’ interior intersects line

visible visible



Is vertex x visible from p?

Let x’ be the edge just before x in the AS,   x’ = AS.predecessor(x)

visible
p xx’

x’is a vertex and it’s visible

visible

x, x’ part of same polygon

p xx’

x’is a vertex and it’s visible

visible invisible

x, x’ part of same polygon



• check the event just before x in AS. Call this x’, x’=AS.predecessor(x)


• if x’ is an edge whose interior intersects sweep line  => x is not visible


• if x’ has a vertex on the sweep line then: 


• if x’ is not visible => x not visible 


• if x’ is visible => x visible, unless they are both on the same polygon          
(a few cases to check)

Runs in  timeO(lg n)

Is vertex x visible from p?



Computing the visibility graph in 
END

O(n2 lg n)



• Complete, not optimal

• Compute the trapezoid decomposition of free space and a graph that 
represents it in   time


• BFS in this graph  in  time 


• Complete and optimal

O(n lg n)

O(n)

• Compute visibility graph  in 


• Dijkstra in VG  in 

O(n2 lg n)
O(EVG lg n)

+ Any shortest path must be a path in VG

+ VG needs to be computed only once, so we can think of it as pre-processing 


-  VG may be large, so this approach is doomed to  Ω(n2)

Recap: Point robot in 2D



Point robot in 2D

•

• Improved to 

• Quadratic barrier broken by Joe Mitchell:  shortest path  for a point robot moving in 

2D can be computed in 

• Continuous Dijkstra approach:  SP of a point robot moving in 2D can be computed in 
   [Hershberger and Suri 1993]

• Special cases can be solved faster:  

• e.g. SP inside a simple polygon w/o holes:   time

O(EVG lg n) = O(n2 lg n)

O(n2)

O(n1.5+ϵ)

O(n lg n + k)

O(n)

Long history of research and results



• Inflection points of SP are not restricted to vertices of S, can be inside edges

Visibility graph does not generalize to 3D

Point robot in 3D

• Shortest paths in 3D much harder 

• Computing 3D shortest paths among polyhedral obstacles is NP-complete 

• Complete and optimal planning in 3D is hopeless



• point robot moving among arbitrary polygons in 2D


• polygonal robot moving among arbitrary polygons in 2D


• translation only 


• translation+rotation


•

Path planning in 2D

next 


