
csci3250: Computational Geometry

Laura Toma

Bowdoin College

Combinatorial motion planning

1. Point robot among obstacles in 2D

screenshot from: ai.stanford.edu/~latombe/cs26n/2012/slides/point-robot-bug.ppt

Motion planning

Motion Planning

Parameters:

• physical space (2d, 3d)

• geometry of obstacles (polygons, disks, convex, non-convex, etc)

• geometry of robot (point, polygon, disc)

• robot movement —how many degrees of freedom (dof); 2d, 3d

• objective function to minimize (euclidian distance, nb turns, etc)

• static vs dynamic environment

• exact vs approximate path planning

• known vs unknown map

Input:
• a robot R
• start and end position
• a set of obstacles S = {O1, O2,…}

Find a path from start to end (that optimizes some objective function).

• A planner is complete: it always finds a path when a path exists

• A planner is optimal: it finds an optimal path (wrt an objective function)

Ideally we want a planner to be complete and optimal.

algorithm that finds a path

Motion Planning

• point robot moving among (arbitrary) polygons in 2D

• polygonal robot moving among (arbitrary) polygons in 2D

• translation only

• translation+rotation

• ….

• robot with arms and articulation moving in 3D

harder

Path planning problems

w
e’

ll
ta

lk
 a

bo
ut

th

es
e

Approaches

• Combinatorial (exact)

• Used for path planning in 2D

• Idea:

• Compute an exact representation of free space as a graph

• Find a path using the graph

• Approximate

• Used for higher dimensional planning

• Idea:

• sample and approximate free space

1. Point robot moving in 2D

v

start

end

obstacle obstacle
obstacle

Point robot in 2D

Input:
• start and end position
• a set of polygonal obstacles S = {O1, O2,…}

Find a path from start to end.

Point robot in 2D

• Questions: How? How long? Size?

(screenshot from O’Rourke)

General idea

• Build a graph that represents
movement through the free space

• based on trapezoid
decomposition of free space

• Search graph to find path

Let’s consider the following scene. Show a trapezoid decomposition of free space and
the corresponding graph (“roadmap”).

• Compute a trapezoid partition of free space

• Build graph of free space

• Search graph to find path

• Big idea: Path planning for point robot in 2D reduces to graph search in the

“free space” graph

Point robot in 2D

Has size and can be
computed in time

O(n)
O(n lg n)

Has size and can be
computed in time

O(n)
O(n)

BFS or DFS in timeO(n)

 = 	complexity of obstacles

	 (total number of edges)
n

Result: Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in

total. We can pre-process the scene in O(n lg n) expected time such that, between any start and

goal position, a collision-free path for R can be computed in O(n) time, if it exists.

Is this complete? Is this optimal?

YES No

Point robot in 2D

Theorem:
Any shortest path among a set S of disjoint
polygonal obstacles:

1. is a polygonal path (that is, not curved)
2. its vertices are the vertices of S.

p
p

What if we wanted an optimal path?

• Idea: Since the vertices of any shortest path are the vertices of S, build a graph that
represents all possible ways to travel between the vertices of the obstacles

• V = {set of vertices of obstacles + + }

• E = {all pairs of vertices such that are visible to each other (and not
inside a polygon)

• Claim: any shortest path must be a path in the VG

pstart pend

(vi, vj) vivj

Visibility graph

Path planning:

• Compute visibility graph

• SSSP (Dijkstra) in VG from to pstart pend

Visibility graph

• V = {set of vertices of obstacles + + }

• E = {all pairs of vertices such that are visible to each other (and not inside a
polygon)

pstart pend

(vi, vj) vivj

these edges outside the polygon
but inside the convex hull have to

be include in the VG

 = 	complexity of obstacles

	 (total number of edges)
n

Computing the Visibility Graph

• Running time:
• Size of visibility graph:

• nb of vertices

• nb of edges:

O(n3)

V : n + 2 = Θ(n)
Ω(n), O(n2)

• Straightforward:
• V = {set of vertices of obstacles + + }
• for each vertex :

• for each vertex :
• if segment does not intersect any edges of the polygon properly AND

 is NOT interior to a polygon: add as an edge

pstart pend

u
v

uv
uv uv

• Notes:
• the edges of the polygons must be in the VG
• interior edges: use inCone() to determine if is in the cone of a, b b a−aa+

• Computing the visibility graph

• straightforward

• improved

• Dijkstra in VG

•

O(n3)
O(n2 lg n)

O(|E | lg n)

Optimal planning for point robot in 2D
 = 	complexity of obstacles

	 (total number of edges)
n

Path planning:
• Compute visibility graph

• SSSP (Dijkstra) in VG from to pstart pend

can have quadratic size

Dijkstra(vertex s)

• initialize

• dist[v] = , pred[v] = null for all v, dist[s] = 0

• for all v: PQ.insert(<v, dist[v]>)

• while PQ not empty

• = PQ.deleteMin()

• done[u] = true

• for each edge (u,v), if v not done:

• alt = dist[u] + edge(u,v)

• if alt < dist[v]

• dist[v] = alt, pred[v] = u, PQ.decreasePriority(v, dist[v])

∞

(u, dist[u])

requires a structure that can search, or a PQueue with additional book-keeping

• Data structures
• PQ of with decreaseKey()
• for all vertices : , pred[u],

(u, dist[u])
u dist[u] done[u]

//claim: dist[u] is the shortest path from s to u

not all pqueues support it

Dijkstra(vertex s)

• initialize

• dist[v] = , pred[v] = null for all v, dist[s] = 0

• PQ.insert(<s, dist[s]>)

• while PQ not empty

• (u, dist[u]) = PQ.deleteMin()

• if u not done, for each edge (u,v), if v not done

• alt = dist[u] + edge(u,v)

• if alt < dist[v]

• dist[v] = alt, perd[v]=u, PQ.insert(<v, dist[v]>)

• done[u]=true

∞

1: insert only the start

2. insert it

(even if it’s already there)

Because we don’t decreaseKey,

PQ may contain the same vertex

with different dist[]. We process u only

the first time we see it

PQ of without decreaseKey()(u, dist[u])Improvement/simplification

Computing the visibility graph in O(n2 lg n)

• For every vertex v: compute all vertices visible from v in O(n lg n)

Improved computation of VG

v

radial sweep

Improved computation of VG

• Radial sweep: rotate a ray centered at v

• Events: vertices of polygons (obstacles) sorted in radial order

• events of equal angle, sorted by distance from v

12

3

v
Θ(vi) = tan−1 yi − yv

xi − xv

VG via line sweep

v

radial sweep

1

2
3

45

6

7

• Radial sweep: rotate a ray centered at v

• Events: vertices of polygons (obstacles) sorted in radial order

• events of equal angle, sorted by distance from v

Active structure (AS) stores all the edges that intersect the sweep line,

ordered by distance from v

v

VG via line sweep

RadialSweep(polygon vertices V, vertex p)

• sort V radially from p, and secondarily by distance from p

• initialize AS with all edges that intersect the horizontal ray from p

• For each vertex v in sorted order:

• use AS to determine if v is visible from p

• figure out if the edges incident to v are above/below the sweep line.

If above -> insert edge in AS. If below => delete edge from AS

Runs in time

Repeat for all vertices p ==>

O(n lg n)
O(n2 lg n)

VG via line sweep

//find all vertices visible from a vertex p

v

w

w visible if vw does not intersect the interior of any obstacle

VG via line sweep

p x
NOT visible

p x
NOT visible

x is NOT visible:

Is vertex x visible from p? some cases

If there is any edge in AS left of x,
whose interior intersects the line

p x
visible

p xx’

x’is a vertex and it’s visible

p x

NOT visible

x’
NOT

visible
NOT

visible

Is vertex x visible from p?

Let x’ be the edge just before x in the AS, x’ = AS.predecessor(x)

p xx’

x’is a vertex and it’s not visiblex’ interior intersects line

visible visible

Is vertex x visible from p?

Let x’ be the edge just before x in the AS, x’ = AS.predecessor(x)

visible
p xx’

x’is a vertex and it’s visible

visible

x, x’ part of same polygon

p xx’

x’is a vertex and it’s visible

visible invisible

x, x’ part of same polygon

• check the event just before x in AS. Call this x’, x’=AS.predecessor(x)

• if x’ is an edge whose interior intersects sweep line => x is not visible

• if x’ has a vertex on the sweep line then:

• if x’ is not visible => x not visible

• if x’ is visible => x visible, unless they are both on the same polygon
(a few cases to check)

Runs in timeO(lg n)

Is vertex x visible from p?

Computing the visibility graph in
END

O(n2 lg n)

• Complete, not optimal

• Compute the trapezoid decomposition of free space and a graph that
represents it in time

• BFS in this graph in time

• Complete and optimal

O(n lg n)

O(n)

• Compute visibility graph in

• Dijkstra in VG in

O(n2 lg n)
O(EVG lg n)

+ Any shortest path must be a path in VG

+ VG needs to be computed only once, so we can think of it as pre-processing

- VG may be large, so this approach is doomed to Ω(n2)

Recap: Point robot in 2D

Point robot in 2D

•

• Improved to

• Quadratic barrier broken by Joe Mitchell: shortest path for a point robot moving in

2D can be computed in

• Continuous Dijkstra approach: SP of a point robot moving in 2D can be computed in
 [Hershberger and Suri 1993]

• Special cases can be solved faster:

• e.g. SP inside a simple polygon w/o holes: time

O(EVG lg n) = O(n2 lg n)

O(n2)

O(n1.5+ϵ)

O(n lg n + k)

O(n)

Long history of research and results

• Inflection points of SP are not restricted to vertices of S, can be inside edges

Visibility graph does not generalize to 3D

Point robot in 3D

• Shortest paths in 3D much harder

• Computing 3D shortest paths among polyhedral obstacles is NP-complete

• Complete and optimal planning in 3D is hopeless

• point robot moving among arbitrary polygons in 2D

• polygonal robot moving among arbitrary polygons in 2D

• translation only

• translation+rotation

•

Path planning in 2D

next

