Combinatorial motion planning

1. Point robot among obstacles in 2D

csci3250: Computational Geometry
Laura Toma
Bowdoin College

Motion planning

free space

obstacle

obstacle free path

Finish

screenshot from: ai.stanford.edu/~latombe/cs26n/2012/slides/point-robot-bug.ppt

Motion Planning

Input:
- arobot R
- start and end position

a set of obstacles S = {01, Op,...}

Find a path from start to end (that optimizes some objective function).

Parameters:
e physical space (2d, 3d)
» geometry of obstacles (polygons, disks, convex, non-convex, etc)
» geometry of robot (point, polygon, disc)
* robot movement —how many degrees of freedom (dof); 2d, 3d
» objective function to minimize (euclidian distance, nb turns, etc)
* static vs dynamic environment
* exact vs approximate path planning

e known vs unknown map

Motion Planning

algorithm that finds a path

|deally we want a planner to be complete and optimal.

A planner is complete: it always finds a path when a path exists

A planner is optimal: it finds an optimal path (wrt an objective function)

Path planning problems

e point robot moving among (arbitrary) polygons in 2D
e polygonal robot moving among (arbitrary) polygons in 2D

 translation only nharder

—
D]
@)

0
©

=
©
S

O

=

e translation+rotation

e robot with arms and articulation moving in 3D

Approaches

- Combinatorial (exact)

Used for path planning in 2D

|dea:
Compute an exact representation of free space as a graph
Find a path using the graph

Approximate
Used for higher dimensional planning
|dea:

sample and approximate free space

1. Point robot moving in 2D

Point robot in 2D

Input:
- start and end position

- a set of polygonal obstacles S = {01, Op,...}

Find a path from start to end.

obstacle

obstacle

obstacle

start

Point robot in 2D

General idea

Build a graph that represents
movement through the free space

based on trapezoid
decomposition of free space

Search graph to find path

Questions: How? How long? Size?

0

T ¢ |

O

(screenshot from O’Rourke)

Let’s consider the following scene. Show a trapezoid decomposition of free space and
the corresponding graph (“roadmap”).

n = complexity of obstacles

Point robot in 2D (total number of edges)

Has size O(n) and can be
» Compute a trapezoid partition of free space €= 1, 1eq in O(n lg n) time

: Has sizeO(n) and can be

- Build graph of free space computed in O(n) time

- Search graph to find path 4= BFS or DFS in O(n) time

Result: Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in
total. We can pre-process the scene in O(n Ig n) expected time such that, between any start and

goal position, a collision-free path for R can be computed in O(n) time, if it exists.

- Big idea: Path planning for point robot in 2D reduces to graph search in the

“free space” graph

Point robot in 2D

|s this complete?

YES

Is this optimal?

NoO

What if we wanted an optimal path?

Theorem:

Any shortest path among a set S of disjoint
polygonal obstacles:

1. is a polygonal path (that is, not curved)

2. its vertices are the vertices of S.

(2

Visibility graph

- Idea: Since the vertices of any shortest path are the vertices of S, build a graph that
represents all possible ways to travel between the vertices of the obstacles

.V ={set of vertices of obstacles + p,,.; + Pon}

E = {all pairs of vertices (v;, v;) such that v,v; are visible to each other (and not

inside a polygon)

- Claim: any shortest path must be a path in the VG

Path planning:
- Compute visibility graph
- SSSP (Dijkstra) in VG from p, ..., to p,..

Visibility graph

.V ={set of vertices of obstacles + p,,,,; + Pondst

. E ={all pairs of vertices (v;, v;) such that v
polygon)

;v are visible to each other (and not inside a

/

3 -

_'!‘

C—

1A r_._.:n,oﬁu.. =t
-:._,.__4'/ Y P

T AN

AR
-h.%

..._._

_.\\‘
o)

(7R AN Z.
Vg, ’v%.w....m =
WA ‘\..“.... o
NS
_ »

S~
@%&
A K

.
T ——— =
Ilnld’.'lllul. ’a

l.l-.’.'.ﬂ.

R s e o
Ve Sy A Y
L4

e

V4
4
V‘\\m\ =

W™

\

7

N

}n.‘“H - ’.\»ﬂ.\!....<"‘

RS

DA 7
%8 e A\Q\\\\\
1 ’ s..“«

e

‘~

20—

Illllll!ﬂlllll

J
\
%

s, _,\A

. — -
e ¢ W A ——

A W R
A ", o
ad, IO S T,

o

)

/

a
|
|

== ,

!

)
\..“-.vk‘.vsm #

-a—

.w.w‘w\,‘lummul.’inc %

X .a.\bﬁ .

X

‘v

R A |
S12;%

A%

AT
wf b
o

¥ m..‘.\.?(.w-. e

% ..ﬁ.‘«.\ -

oip

%
s

7 S
XK
'

e 4
eicg N
S AU
A .\vb«...\n ey
T

Y
by
B e

774
,\\\X\
\

{

v,
Pay '.O;b ..I\‘

B i A\ Y hs AR O
AR

v ¥ ”
AR

RN

N7

PR
9:..\\ 5 .0/./..1\..

S

these edges outside the polygon
but inside the convex hull have to
be include in the VG

n = complexity of obstacles
(total number of edges)

Computing the Visibility Graph

- Straightforward:
.V ={set of vertices of obstacles + p, ., + Pons}
- for each vertex u:
- for each vertex v:

- if segment uv does not intersect any edges of the polygon properly AND
uv is NOT interior to a polygon: add uv as an edge

Notes:
- the edges of the polygons must be in the VG
interior edges: use inCone(a, b) to determine if b is in the cone of a"aa™

Running time: O(n?)

- Size of visibility graph:

. nbof vertices V:n+ 2 = O(n)
. nb of edges: Q(n), O(n?)

n = complexity of obstacles
(total number of edges)

Optimal planning for point robot in 2D

Path planning:

- Compute visibility graph < can have quadratic size

-SSSP (Dijkstra) in VG from p,...to p,.

Computing the visibility graph
O(n°) straightforward
O(n?1g n) improved

Dijkstra in VG
O(|E|lgn)

« Data structures
. PQ of (u, dist[u]) with decreaseKey()
. for all vertices u: dist[u], pred[u], done|u]

Dijkstra(vertex s)
« initialize
dist[v] = 00, pred[v] = null for all v, dist[s] =0
for all v: PQ.insert(<v, dist[v]>)
while PQ not empty
(u, dist[u]) = PQ.deleteMin()
done[u] =true € //claim: dist[u] is the shortest path from s to
for each edge (u,v), if vnot done:
alt = dist[u] + edge(u,v)
- ifalt <dist[v]
dist[v] = alt, pred[v] =u, PQ.decreasePriority(v, dist[v])

u

requires a structure that can search, or a PQueue with additional book-keeping
not all pqueues support it

Improvement/simplification PQ of (u, dist[u]) without decreaseKey()

Dijkstra(vertex s)
initialize
« dist[v] =00, pred[v] =null for all v, dist[s] =0
- PQ.insert(<s, dist[s]>)

while PQ not empty - _

* (u, dist[u]) =PQ.deleteMin()

- ifunot done, for each edge (u,v), if vnot done
- alt =dist[u] + edge(u,v)
« ifalt <dist[v]
- dist[v] =alt, perd[v]=u, PQ.insert(<v, dist[v]>)

e (i S v

Computing the visibility graph in O(n?1g n)

Improved computation of VG

e For every vertex v. compute all vertices visible from v in O(n Ig n)

radial sweep

Improved computation of VG

 Radial sweep: rotate a ray centered at v
 Events: vertices of polygons (obstacles) sorted in radial order

* events of equal angle, sorted by distance from v

VG via line sweep

 Radial sweep: rotate a ray centered at v
 Events: vertices of polygons (obstacles) sorted in radial order

* events of equal angle, sorted by distance from v

radial sweep

)

P

VG via line sweep

Active structure (AS) stores all the edges that intersect the sweep line,

ordered by distance from v

VG via line sweep

//find all vertices visible from a vertex p

RadialSweep(polygon vertices V, vertex p)
« sort Vradially from p, and secondarily by distance from p
* nitialize AS with all edges that intersect the horizontal ray from p
e For each vertex v in sorted order:
e use AS to determine if v is visible from p

e figure out if the edges incident to v are above/below the sweep line.

If above -> insert edge in AS. If below => delete edge from AS

Runs in O(nlgn) time
Repeat for all vertices p ==> O(n*1g n)

VG via line sweep

w visible if vw does not intersect the interior of any obstacle

Is vertex x visible from p? some cases

X

NOT visible

x is NOT visible:

If there is any edge in AS left of x,
whose interior intersects the line

p X

visible

Is vertex x visible from p?

Let X’ be the edge just before x in the AS, x’ = AS.predecessor(x)

X’ Interior intersects line x’Is a vertex and it’'s not visible

X X

NOT visible

X'ISs a vertex and it’s visible

visible visible

Is vertex x visible from p?

Let X’ be the edge just before x in the AS, x’ = AS.predecessor(x)

x'is a vertex and it’s visible X'is a vertex and it’s visible

X, X' part of same polygon X, X" part of same polygon

, ‘ ;)

visible invisible visible visible

|s vertex x visible from p?

» check the event just before x in AS. Call this x’, xX’=AS.predecessor(x)
e if X’ is an edge whose interior intersects sweep line => x is not visible
e if X’ has a vertex on the sweep line then:

e if X is not visible => x not visible

o if X' is visible => x visible, unless they are both on the same polygon

(a few cases to check)

Runs in O(lgn) time

Computing the visibility graph in O(n” g n)
END

Recap: Point robot in 2D

- Complete, not optimal

« Compute the trapezoid decomposition of free space and a graph that
represents it in O(nlgn) time

« BFS in this graph in O(n) time

- Complete and optimal

. Compuite visibility graph in O(n?1g n)
. Dijkstrain VG in O(Eyglgn)

+ Any shortest path must be a path in VG
+ VG needs to be computed only once, so we can think of it as pre-processing

- VG may be large, so this approach is doomed to Q(n?)

Point robot in 2D

Long history of research and results
. O(Ey;1gn) = O(n?1gn)
. Improved to O(n?)

- Quadratic barrier broken by Joe Mitchell: shortest path for a point robot moving in

2D can be computed in O(n!>7€)

- Continuous Dijkstra approach: SP of a point robot moving in 2D can be computed in
O(nlgn + k) [Hershberger and Suri 1993]

- Special cases can be solved faster:

. e.g. SP inside a simple polygon w/o holes: O(n) time

Point robot in 3D

Visibility graph does not generalize to 3D

- Inflection points of SP are not restricted to vertices of S, can be inside edges

/A

- Computing 3D shortest paths among polyhedral obstacles is NP-complete

4
L4
L4
L4
L4
’
"

- Shortest paths in 3D much harder

- Complete and optimal planning in 3D is hopeless

Path planning in 2D

(/] point robot moving among arbitrary polygons in 2D
{ : : :
&} * polygonal robot moving among arbitrary polygons in 2D
 translation only

e translation+rotation

