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Path Planning Approaches

• Combinatorial / geometric planers
• Exact: Compute C-free geometrically  
• Comments


• This gives complete planners

• Works beautifully in 2D and for some simple cases in 3D 

• Worst-case bound for combinatorial complexity of C-objects in 3D is high 


• A complete planner in 3D runs in 

• Impractical  for high #dof


• Approximate planners 

• Approximate C-free

O(2n#dof)



Approximate path planning 

Knowing  C-obstacles is like having a map:  You know the roads and you can 
make a plan on how to get to the goal.

R

target

we are able to check, for any given 
placement p: is p in C-free? 

C-obstacles not known

Without knowing the C-obstacles you are in the dark. 



• Idea: Approximate C-free

• Approaches

• Space partitioning/grid-based planners with A*

• and variants (weighted A*, D*, ARA*,…)

• Sampling-based 

• Rapidly-Exploring Random Tree (RRT)

• Probabilistic RoadMap (PRM)  

• Potential field planners

• Hybrid methods combing ideas from all of the above 

Approximate path planning 



Grid-based planners with A*



R
robot

start

target

Grid based planners  “pixelize” the space



R
robot

Let’s say we have a robot moving in 2d without rotation and we 
want to implement a grid-based planner. 

C-space=(x, y)



δx

Kx =
Xmax

δx

δy

Ky =
Ymax

δy

We decide what resolution we want on each axis, and from here 
we get the size of the grid in that dimension.

e.g. we can sample C-space=  with a grid 
of size 

(x, y)
k = 1024 × 1024

C-space sampled with a grid

C-space=(x, y)



• Sample C-space with a uniform  grid/lattice   

• This “pixelizes" the C-space (pixels/voxels)

• Search for a path from start to end through “free” space

• Dijkstra/A*  and  variants  

• Graph is implicit, given by lattice topology: move +/-1 in each direction, 
possibly diagonals

Grid-based planners with A*



Dijkstra’s algorithm

• It’s basically a best-first search 


• Initialize:   ,


• Repeat: select the best vertex (closest to start), and relax its edges

dist[v] = ∞, dist[s] = 0



Dijkstra(vertex s) 


• initialize


• for all v: dist[v] = , done[v]=false,  pred[v]=null


• dist[s] = 0,  PQ.insert(<s, dist[s]>)


• while PQ not empty 


•  = PQ.deleteMin() 


• mark u as done  


• for each edge (u,v), if v not done: 


• alt = dist[u] + edge(u,v) 


• if alt < dist[v]  


• dist[v] = alt,  PQ.decreaseKey(v, dist[v])

∞

(u, dist[u])

requires a structure that can search, or a PQueue with additional book-keeping

//claim: dist[u] is the shortest path from s to u

insert the start

• Data structures

• PQ of 
• priority(v):   

(u, dist[u])
dist[v]

• Keeps track of : 
•  = cost of getting from  to 

• : true if u has been explored

•  : predecessor of  on the (optimal) path from  to 

dist[v] start v
done[u]
pred[v] v start v



Dijkstra(vertex s) 

• initialize


•  for all v: dist[v] = , done[v]=false, pred[v]=null


• dist[s] = 0 , PQ.insert(<s, dist[s]>)

• while PQ not empty 


• (u, dist[u]) = PQ.deleteMin() 

• if u is done, continue 

• mark u as done  

• for each neighbor v of u, if v not done and isFree(v): 


• alt = dist[u] + edge(u,v) 

• if alt < dist[v]  


• dist[v] = alt,  PQ.insert(v, dist[v])

∞

isFree(v): is v in C-free

On a grid-graph

u is a placement, 
and also a pixel 

on the grid



4-connected 8-connected

(x, y) (x + δx, y)(x − δx, y)

(x, y + δy)

(x, y − δy)

Grid graphs in 2d

Neighbors of u = (x, y)
u = (x, y) is a placement, and also a pixel on the grid



neighbors of v = (x, y, θ)

Grid graphs in 3d

6-connected: 

or, connected diagonally as well 

(x + δx, y, θ)
(x, y + δy, θ)

(x, y, θ + δθ)

(x − δx, y, θ)
(x, y − δy, θ)

(x, y, θ − δθ)



//return true if placement p is in C-free


//put differently, return true if placing the robot R at p does not intersect any obstacle


bool isFree(placement p,  the robot,   the obstacles)

• translate and rotate the robot to p 

• check whether any edge of the robot intersects any of the obstacles

isFree(v): is v in C-free

Would my robot, if placed at this point p, intersect any obstacle?

 or  or  or …(x, y) (x, y, θ) (x, y, z, θx, θy, θz)p is a point in C-space:

Motion planners assume the existence of a collision-detection routine that can 
check whether a given configuration, or path segment, is in free space. 



C-space: 3D
2D: robot can translate and rotate

configuration p:  (x, y, θ)

R

R(8,5,0)

(8,5,0): free

We need to write: isFree( , Robot R, Obstacles S)p = (x, y, θ)

EXAMPLE

R

R(0,0,0)



R

R(8,15,45)

(8,15,45): not free

EXAMPLE

R

R(0,0,0)



• Evaluates vertices based on their distance to the start 


• priority(v) =  

• Dijkstra will explore a large portion of the graph before reaching the target. Would be 

nice if we could  cut down the number of nodes traversed  before reaching the goal

dist(v)

Dijkstra =>  A* https://qiao.github.io/PathFinding.js/visual/ 

• Idea:  Steer the search towards the goal (while keeping solution optimal)


• priority(v) :  


• dist(v):  cost of getting from  to 


• h(v): estimate of the cost from  to  


•  Dijkstra is   A* with 

f(v) = dist(v) + h(v)
start v

v goal
h(v) = 0

Dijkstra

A*

https://qiao.github.io/PathFinding.js/visual/


• https://qiao.github.io/PathFinding.js/visual/ 


• https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstras_progress_animation.gif


• https://www.youtube.com/watch?v=DINCL5cd_w0


•    https://www.google.com/search?client=firefox-b-1-d&q=dijkstra+
+vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-
AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo


•

Dijkstra =>  A*

Animations

https://qiao.github.io/PathFinding.js/visual
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstras_progress_animation.gif
https://www.youtube.com/watch?v=DINCL5cd_w0
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo


• The heuristic  is called admissible  if  is smaller than the true cost of getting 
from v to the target. 


• Theorem: If  is admissible then A* will return an optimal solution. 


• Put differently if  is too high, the algorithm loses optimality 


• h(v) = 0 will always work 


• higher  will steer the search more => more efficient 


• The closer h(v) is to the true cost of getting from v to goal,  the more efficient


• if  is too high => A* not optimal 


• In many situations a safe admissible heuristic is  


 EuclidianDistance(

h(v) h(v)

h(v)
h(v)

h(v)

h(v)

h(v) = v, goal

A*

admissible because the cost of getting from a to b is  the Euclidian distance from a to b≥



generic A*(placement start, goal) 


• initialize


• for all v: dist[v] = , f[v] = , pred[v] = null, done[v]=false


• dist[s] = 0, f[s] = h(s, target),  PQ.insert(<s, f[s]>)


• while PQ not empty 


• <u, f[u]>  = PQ.deleteMin()


• for each neighbor v, if not done[v] and isFree(v)


• alt = dist[u] + edge(u,v)


• if alt < dist[v]  


• dist[v] = alt;  f[v] = dist[v] + h(v, target); 


• pred[v] = u; PQ.decreaseKey(<v,  f[v]>)

∞ ∞

isFree(v): is v in C-free

 or  or  or …(x, y) (x, y, θ) (x, y, z, θx, θy, θz)



Grid-based planners with A*

• The paths may be longer than true shortest path in C-space
• Not complete, but resolution complete 

• probability of finding a solution, if one exists —> 1 as the resolution of 
the grid increases

• While searching, it finds what points are in C-free, so it constructs C-free. Can 
interleave the construction with the search (ie construct only what is 
necessary). Or can construct it all at once (occupancy grid).

• simple to understand/implement
• work in any dimension

• size and quality of path depends on the discretization of the problem
• not practical in high-d spaces 

• e.g. 6 dof:  1000 x 1000 x 1000 x 360 x 360 x 360 



• weighted A*


•  ==> solution is no worse than  optimal 


• anytime A*

• use weighted A* to find a first solution ; then use A* with first 

solution as upper bound  to prune the search 

• real-time replanning


• if the underlying graph changes,  it usually affects a small part of 
the graph  ==> don’t run search from scratch 


• D*: efficiently recompute SP every time the underlying graph 
changes 

c ⋅ h() (1 + c) ×

A* variants 

• Finer resolution => better paths but slower

• C-free can be pre-computed (occupancy grid) or computed  incrementally

• One-time path planning vs many times; static vs dynamic environment

• fixed resolution vs. multi-resolution techniques 



Sampling-based planning

• Geometric planners:   

• hard to construct C-obstacles except for simple cases (2d, no rotation)


• Grid-based planners: 

• grid has uniform resolution and uses too much large for high #dof 
e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360 

• Sampling-based planners
• Sample and generate a sparse representation of C-free 

• Potential field planners



Sampling-based planners



R

target

we are able to check, for 
any given placement p: 

is p in C-free? 

C-free is not known

We don’t know the C-obstacles, but we’ll assume that we have a 
function that can check whether a given configuration is free.



//return true if placement p is in C-free


//put differently, return true if placing the robot R at p does not intersect any obstacle


bool isFree(placement p,  the robot,   the obstacles)

• translate and rotate the robot to p 

• check whether any edge of the robot intersects any of the obstacles

isFree(v): is v in C-free

 or  or  or …(x, y) (x, y, θ) (x, y, z, θx, θy, θz)p is a point in C-space:

Would my robot, if placed at this point p, intersect any obstacle?

All planners need a collision detection function





• Idea: Sample C-free and compute a roadmap that captures its connectivity

• Single-query, incremental search  planners

• Construct a graph/roadmap to connect  and 

• Reconstruct for different  pairs

• E.g. RRT (rapidly-exploring random tree) and variants  

• Multiple-query planners

• Construct a graph/roadmap  and use it for any  pairs 

• E.g. PRM (probabilistic roadmap) and variants

start end

(start, end)

(start, end)

Sampling-based planning 

History
• Dijkstra 1950s

• A* 1960s

• PRM 1996

• RRT 1998

• RRT* 2010



• Efficient, easy to implement, applicable to many types of scenes

• Well-suited for high #dof

• Shown to be probabilistically complete

• Finds a solution, if one exists, with probability —> 1 as the nb. of samples 
increases 

• Leading motion planning technique, embraced by many groups, many variants, 
used in many type of scenes/applications. 

• PRM*,  FMT* (fast marching tree), …

• No discretization (sample from a continuous space)

• But: Path not optimal, time may be unbounded 

Probabilistic Roadmaps and RRTs 



The RRT

• Incrementally build  a tree rooted at 
“start” outwards, while trying to 
determine if a path exists at each 
step 

• Original paper: 
• https://www.cs.cmu.edu/~motionplanning/

papers/sbp_papers/PRM/randtrees_02.pdf

(LaValle, 1998)

NEW_CONFIG(  
• if   is not free, return false 

• if segment  is not in C-free, return false 

(q, qnear, qnew)
q

qnearqnew

https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/PRM/randtrees_02.pdf
https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/PRM/randtrees_02.pdf


https://www.youtube.com/watch?v=Ob3BIJkQJEw


PRM


• Roadmap adjusts to the density of free space and is more connected around 
the obstacles 


• Size of roadmap can be adjusted as needed


• More time spent in the “learning”  phase ==> better roadmap 


• Built once, re-used many times, used in static environments 


RRT


• Used in changing environments 


• Faster to build than PRM 

Probabilistic Roadmaps and RRTs



R

R

C-space: 3D2D: robot can translate and rotate

configuration p:  (x, y, θ)

R(8,5,0)

R(8,15,45)

(8,5,0): free

(8,15,45): not free

We need to write: isFree( , Robot R, Obstacles S)p = (x, y, θ)



isFree(v): is v in C-free

Also need a segment collision detection function

bool localPlanner(placement p, placement q,  the robot,   the obstacles)

 or  or  or …(x, y) (x, y, θ) (x, y, z, θx, θy, θz)//p, q are points in C-space:

Is segment pq  in  C-free?



Probabilistic roadmaps



• Roadmap construction phase

• Start with a sampling of points in C-free and try to connect them 

• Two points are connected by an edge if a simple quick planner can find 
a path between them 

• This will create a set of connected components

• Roadmap query phase

• Use roadmap to find path between any two points 

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)



• Generic-Sampling-Based-Roadmap: 

• for i = 1 to N:  


• generate a random point  in 


• if isFree( p ),  add  to R


• add  to R


• for each point  in R: 


•  = { closest neighbors of  in R} 


• for each neighbor  in : 


• if there is a collision-free local path from  to  and there is not already an 
edge from  to  then add an edge from  to  in the roadmap R

pi C

p

pstart

pi

N(pi) pi

q N(pi)

pi q
pi q pi q

• Variants

•  how they select the initial n samples from C


• e.g. return a set of n points arranged on a regular grid in C, random points, etc

• how they select the neighbors


• return the k nearest neighbors of p in V

• return the set of points lying in a ball centered at p of radius r


• Often used:  samples arranged in a 2-dimensional grid, with nearest 4 neighbors (2d)

Probabilistic Roadmaps



Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

 the local planner  delta(c,n): is segment cn in C-free?

• Start with a random sampling of points in C-free 


• Roadmap is stored as set of trees for space 
efficiency 


• trees encode connectivity, cycles don’t 
change it.  Additional edges are useful for 
shorter paths, but not for completeness 


• Augment roadmap by selecting additional 
sample points in areas that are estimated to be 
“difficult”



• Roadmap adjusts to the density of free space and is more connected around the obstacles 

• Size of roadmap can be adjusted as needed

• More time spent in the “learning”  phase ==> better roadmap 

Probabilistic Roadmaps

• Efficient, easy to implement, applicable to many types of scenes

• Well-suited for high #dof

• No discretization (sample from a continuous space)

• Shown to be probabilistically complete

• finds a solution, if one exists, with probability —> 1 as the nb of samples increases 

• Leading motion planning technique, Embraced by many groups, many variants of PRM’s, used in 
many type of scenes/applications (PRM*,  FMT* (fast marching tree), …)



Sampling-based planning

• Geometric planners:   

• hard to construct C-obstacles except for simple cases (2d, no rotation)


• Grid-based planners: 

• grid has uniform resolution and uses too much large for high #dof 
e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360 

• Sampling-based planners
• Sample and generate a sparse representation of C-free 

• Potential field planners



Potential field methods   [Latombe et al, 1992] 

• Define a potential field 
• Robot moves in the direction of steepest descent on potential function 

• Ideally potential function has global minimum at the goal, has no local 
minima, and is very large around obstacles 

• Algorithm outline: 
• place a regular grid over C-space
• search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

https://www.youtube.com/watch?v=r9FD7P76zJs


Potential field methods  

• Pro: 
• Framework can be adapted to any specific scene

• Con: 
• can get stuck in local minima 
• Potential functions that are minima-free are known, but expensive to compute

• Example:   RPP (Randomized path planner) is based on potential functions 
• Escapes local minima by executing random walks 
• Successfully used to 

• perform riveting ops on plane fuselages 
• plan disassembly operations for maintenance of aircraft engines 



Demos



DARPA challenges

• Fostered the development of self-driving vehicles 


• 2004: noone finished the course 


• 2005: 


• 132 mi course,  in the desert in Nevada


• 5 vehicles finished the race, with Stanford “Stanley” in first place, the first 
autonomous vehicle to ever finish a race (Stanley now at the Smithsonian Air & 
Space museum)


• 2007 


• Required teams to build an autonomous vehicle capable of driving in traffic and 
performing complex maneveurs such as merging, passing and parking


• 5 vehicles finished the race,   with CMU “Boss” in first place, and Stanford “Junior” 
in second. 



• Planners: Both graph search and incremental tree-based 


• CMU:  lattice graph in 4D (x,y, orientation, velocity), search with D* 


• Stanford:  incremental sparse tree of possible maneuvers, hybrid A*


• Virginia Tech:  graph discretization of possible maneuvers, search with A*


• MIT: variant of RRT with biased sampling 

• A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden, Michal Cáp, Sze Zheng 
Yong, Dmitry Yershov, and Emilio Frazzoli https://arxiv.org/pdf/1604.07446.pdf

DARPA challenges

• talk by Sertac Karaman in Darpa 2007 MIT team: 

https://arxiv.org/pdf/1604.07446.pdf


DARPA 2007, Stanford team

http://robots.stanford.edu/papers/junior08.pdf
• uses hybrid A*

https://www.youtube.com/watch?v=qXZt-B7iUyw

• Stanford’s A*-based planner in action

http://robots.stanford.edu/papers/junior08.pdf
https://www.youtube.com/watch?v=qXZt-B7iUyw


DARPA

• Currently, RACER challenge for off-road autonomous vehicles 

https://www.darpa.mil/news-events/2023-04-11

http://www.apple.com
https://www.darpa.mil/news-events/2023-04-11


https://www.youtube.com/watch?v=QR3U1dgc5RE (start at min 10 for RRT)

https://www.youtube.com/watch?v=QR3U1dgc5RE
https://www.youtube.com/watch?v=QR3U1dgc5RE


https://www.youtube.com/watch?v=tlFVbHENPCI

https://www.youtube.com/watch?v=tlFVbHENPCI
https://www.youtube.com/watch?v=tlFVbHENPCI


https://www.youtube.com/watch?v=gP6MRe_IHFoComparison of RRT, PRM (MIT course project)

https://www.youtube.com/watch?v=gP6MRe_IHFo
https://www.youtube.com/watch?v=gP6MRe_IHFo


Project 7 














