3. Approximate path planning

csci3250: Computational Geometry
Laura Toma
Bowdoin College

Path Planning Approaches

- Combinatorial / geometric planers
- Exact: Compute C-free geometrically
« Comments
e This gives complete planners
« Works beautifully in 2D and for some simple cases in 3D

« Worst-case bound for combinatorial complexity of C-objects in 3D is high

« A complete planner in 3D runs in 0(2”#d0f)

e Impractical for high #dof

- Approximate planners h

- Approximate C-free

Approximate path planning

Knowing C-obstacles is like having a map: You know the roads and you can
make a plan on how to get to the goal.

Without knowing the C-obstacles you are in the dark.

we are able to check, for any given
placement p: is p in C-free?

Approximate path planning

- |ldea: Approximate C-free
- Approaches
Space partitioning/grid-based planners with A*
- and variants (weighted A*, D*, ARA*,...)
Sampling-based
Rapidly-Exploring Random Tree (RRT)
Probabilistic RoadMap (PRM)
Potential field planners

Hybrid methods combing ideas from all of the above

Grid-based planners with A*

robot

Grid based planners “pixelize” the space

pryowniraciong com 800N

Let's say we have a robot moving in 2d without rotation and we

want to implement a grid-based planner.

C-space=(x, y)

robot

We decide what resolution we want on each axis, and from here

we get the size of the grid in that dimension.

X
fo gzax
*)

C-space=(x, y)

C-space sampled with a grid

Grid-based planners with A*

Sample C-space with a uniform grid/lattice
This “pixelizes" the C-space (pixels/voxels)

Search for a path from start to end through “free” space
Dijkstra/A* and variants

Graph is implicit, given by lattice topology: move +/-1 in each direction,
possibly diagonals

Dijkstra’s algorithm

« |t's basically a best-first search
o |Initialize: dist[v] = o0, dist[s] = 0,

* Repeat: select the best vertex (closest to start), and relax its edges

 Data structures
- PQ of (u, dist[u])
. priority(v): dist[v]

Keeps track of :
dist[v] = cost of getting from startto v
donelu]: true if u has been explored

pred[v] : predecessor of v on the (optimal) path from start to v

Dijkstra(vertex s)

« initialize

« while PQ not empty

mark u as done

. ifalt < dist[v]

« forall v: dist[v] = 00, done[Vv]=false, pred[v]=null
- dist[s] =0, PQ.insert(<s, dist[s]>)

« (u,dist[u]) = PQ.deleteMin()

- for each edge (u,v), if v not done:

- alt=dist[u] + edge(u,v)

- dist[v] =alt, PQ.decreaseKey(v, dist[v])

insert the start

//claim: dist[u] is the shortest path from s to u

requires a structure that can search, or a PQueue with additional book-keeping

On a grid-graph

Dijkstra(vertex s)
initialize
for all v: dist[v] = 00, done[v]=false, pred[v]=null
dist[s] = O, PQ.insert(<s, dist[s]>)

while PQ not empty

uis a placement,

e ereteane © (u, dist[u]) = PQ.deleteMin()

on the grid

if u is done, continue

mark u as done

if alt < dist[Vv]
dist[v] = alt, PQ.insert(v, dist[v])

for eaclineighbor v of Wi if v not done and isFree(vj:
- alt=dist[u] + edge(u,v)

isFree(v): is v in C-free

Grid graphs in 20
u = (X, y) is a placement, and also a pixel on the grid

Neighbors of u = (x, y)

(x,y +9,)
@ & &
e = =
(-x_éx’y) (x,y) (x+5x,y)
@ @ &
(x,y = 9,)

4-connected 8-connected

Grid graphs in 3d

neighbors of v = (x, y, 0)

6-connected: & +96,,y,0) (x—20,,y,0)
(x7y + 5};’ 9) (x’y - 5}” 9)

(x,y,0 + 6y) (x,y,0 —6p)

or, connected diagonally as well

Motion planners assume the existence of a collision-detection routine that can

check whether a given configuration, or path segment, is in free space.

Would my robot, if placed at this point p, intersect any obstacle?

/[return true if placement p is in C-free

//put differently, return true if placing the robot R at p does not intersect any obstacle
bool isFree(placement p, the robot, the obstacles)

» tranglate and rotate the robot to p

» chieck whether any edge of the robot intersects any of the obstacles

0 is a point in C-space: (x,y) or (x,y,0) or (x,y,2,0,, Qy, 0,)or ...

EXAMPLE

We need to write: isFree (p = (x,y,6), Robot R, Obstacles S)

2D: robot can translate and rotate
C-space: 3D configuration p: (x,y,)

(8,5,0): free

R(8,5,0)

R(0,0,0)

EXAMPLE

(8,15,45): not free

R(0,0,0)

DlJ kStra => A* https://qiao.github.io/PathFinding.js/visual/

Dijkstra

 FEvaluates vertices based on their distance to the start
. priority(v) = dist(v)

« Dijkstra will explore a large portion of the graph before reaching the target. Would be
nice if we could cut down the number of nodes traversed before reaching the goal

A*
* |dea: Steer the search towards the goal (while keeping solution optimal)
o priority(v) : f(v) = dist(v) + h(v)

o dist(v): cost of getting from start to v

o h(v): estimate of the cost from v to goal

« Dijkstrais A*with A(v) =0

https://qiao.github.io/PathFinding.js/visual/

Dijkstra => A”*

Animations

o https://giao.qgithub.io/PathFinding.js/visual

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstras _progress_animation.qif

https://www.voutube.com/watch?v=DINCL 5cd w0

https://www.qoogle.com/search?client=firefox-b-1-d&qg=dijkstra+

+vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2f{XNvMr-
AhV1FFkFHcSxB kQOpQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vid=cid:02bef27f,vid:9024lzsknDo

https://qiao.github.io/PathFinding.js/visual
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstras_progress_animation.gif
https://www.youtube.com/watch?v=DINCL5cd_w0
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo

A*

« The heuristic h(v) is called admissible if h(v) is smaller than the true cost of getting
from v to the target.

« Theorem: If h(v) is admissible then A* will return an optimal solution.
« Put differently if A(v) is too high, the algorithm loses optimality
e h(v) = 0 will always work
« higher h(v) will steer the search more => more efficient
* The closer h(v) is to the true cost of getting from v to goal, the more efficient
o if h(v) is too high => A* not optimal
* In many situations a safe admissible heuristic is

h(v) = EuclidianDistance(v, goal

admissible because the cost of getting from a to b is > the Euclidian distance fromato b

(x.y) or (x,.0) or (x,.2,0,,0,,0) or ...

generic A *(placement start, goal)
initialize
for all v: dist[v] = o0, f[v] = 00, pred[Vv] = null, done[v]=false
- dist[s] =0, f[s] = h(s, target), PQ.insert(<s, f[s]>)
while PQ not empty
<u, flu]> =PQ.deleteMin()

for each fnot done[v] and

alt = dist[u] + edge(u,v)
. ifalt < dist[v] isFree(v): is v in C-free

dist[v] = alt; f[v] =dist[v] + h(v, target);
- pred[v] =u,; PQ.decreaseKey(<v, f[v]>)

Grid-based planners with A*

The paths may be longer than true shortest path in C-space
Not complete, but resolution complete

probability of finding a solution, if one exists —> 1 as the resolution of
the grid increases

While searching, it finds what points are in C-free, so it constructs C-free. Can
interleave the construction with the search (ie construct only what is
necessary). Or can construct it all at once (occupancy grid).

simple to understand/implement

work in any dimension

size and quality of path depends on the discretization of the problem

not practical in high-d spaces

* e.g.6dof: 1000 x 1000 x 1000 x 360 x 360 x 360

A* variants

e weighted A"
« ¢ - h() ==> solution is no worse than (1 + ¢) X optimal
e anytime A*

« use weighted A* to find a first solution ; then use A* with first
solution as upper bound to prune the search

e real-time replanning

e if the underlying graph changes, it usually affects a small part of
the graph ==> don’t run search from scratch

« D*: efficiently recompute SP every time the underlying graph
changes

Finer resolution => better paths but slower
C-free can be pre-computed (occupancy grid) or computed incrementally
One-time path planning vs many times; static vs dynamic environment

fixed resolution vs. multi-resolution techniques

Sampling-based planning

Geometric planners:
e hard to construct C-obstacles except for simple cases (2d, no rotation)
Grid-based planners:

e grid has uniform resolution and uses too much large for high #dof
e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360

+ Sampling-based planners

Sample and generate a sparse representation of C-free

Potential field planners

Sampling-based planners

We don’t know the C-obstacles, but we’ll assume that we have a
function that can check whether a given configuration is free.

we are able to check, for
any given placement p:
is p in C-free?

All planners need a collision detection function

Would my robot, if placed at this point p, intersect any obstacle?
/[return true if placement p is in C-free

/[put differently, return true if placing the robot R at p does not intersect any obstacle

bool isFree(placement p, the robot, the obstacles)

e translate and fotate the robot to p

» check whetlier any edge of the robot intersects any of the obstacles

o is a point in C-space: (x,y) or (x,y,0) or (x,y,2,0,, Hy, 0,)or ...

Sampling-based planning

ldea: Sample C-free and compute a roadmap that captures its connectivity
Single-query, incremental search planners

Construct a graph/roadmap to connect start and end

Reconstruct for different (start, end) pairs

E.g. RRT (rapidly-exploring random tree) and variants
Multiple-query planners

Construct a graph/roadmap and use it for any (start, end) pairs

E.g. PRM (probabilistic roadmap) and variants

History

* Dijkstra 1950s
* A* 1960s
 PRM 1996

* RRT 1998

e RRT* 2010

Probabilistic Roadmaps and RRTs

Efficient, easy to implement, applicable to many types of scenes
Well-suited for high #dof
Shown to be probabilistically complete

Finds a solution, if one exists, with probability —> 1 as the nb. of samples
increases

Leading motion planning technique, embraced by many groups, many variants,
used in many type of scenes/applications.

PRM*, FMT™* (fast marching tree), ...

- No discretization (sample from a continuous space)

- But: Path not optimal, time may be unbounded

The RRT
(LaValle, 1998)

Incrementally build a tree rooted at
“start” outwards, while trying to
determine if a path exists at each
step

- Original paper:
- https://www.cs.cmu.edu/~motionplanning/
papers/sbp_papers/PRM/randtrees_02.pdf

NEW_CONFIG((4: Gear Gnew)
if g is not free, return false

if segment g,,,.,,9,,.., is not in C-free, return false

BUILD_RRT(gjns)

1 T.init(Gina);
2 fork=1to K do
3 Grand — RANDOM_CONFIG();
4 EXTEND(T, grand);
5 Return T
EXTEND(T,q)
1 @near — NEAREST NEIGHBOR(q, T);
2 if NEW_CONFIG(q, G,cars Gnew) then
3 T .add _vertex(q,...);
4 T .add_edge(qnears Gnew);
) if ¢ner. = g then
6 Return Reached,
7 else
8 Return Advanced,
9 Return Trapped,

Figure 2: The basic RRT construction algorithm.

y Gnew

e

| Qt'm't

.

Figure 3: The EXTEND operation.

https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/PRM/randtrees_02.pdf
https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/PRM/randtrees_02.pdf

RRTs & RRT*

Random Trees,

1001 nodes,

et reached

oal not

1001 nodes,

https://www.youtube.com/watch?v=Ob3BIJkQJEw

Probabilistic Roadmaps and RRTs

PRM

 Roadmap adjusts to the density of free space and is more connected around
the obstacles

« Size of roadmap can be adjusted as needed
 More time spent in the “learning” phase ==> better roadmap

e Built once, re-used many times, used in static environments

RRT
* Used in changing environments

 Faster to build than PRM

We need to write: isFree (p = (x,y,6), Robot R, Obstacles S)

2D: robot can translate and rotate C-space: 3D

configuration p: (x,y,)

(8,15,45): not free

(8,5,0): free

Also need a segment collision detection function

Is segment pg in C-free?

/Ip, q are points in C-space:(x,y) or (x,y,0) or (x,y,z,0,, ¢9y, 6,)or ...

bool localPlanner(placement p, placement g, the robot, the obstacles)

Probabilistic roadmaps

PrObabiIiStiC ROadmapS (Kavraki, Svetska, Latombe, Overmars et al , 1996)

Roadmap construction phase
Start with a sampling of points in C-free and try to connect them

Two points are connected by an edge if a simple quick planner can find
a path between them

This will create a set of connected components
Roadmap query phase

Use roadmap to find path between any two points

Probabilistic Roadmaps

* Generic-Sampling-Based-Roadmap:
« fori=1toN:
+ generate a random point p; in C
ifisFree(p), addpto R
- addpy,toR
- for each point p; in R
- N(p;) = { closest neighbors of p, in R}
- for each neighbor g in N(p,):

- if there is a collision-free local path from p; to g and there is not already an
edge from p; to g then add an edge from p; to g in the roadmap R

e \Variants
e how they select the initial n samples from C
* e.g.return a set of n points arranged on a regular grid in C, random points, etc
* how they select the neighbors
* return the k nearest neighbors of p in V
e return the set of points lying in a ball centered at p of radius r

« Often used: samples arranged in a 2-dimensional grid, with nearest 4 neighbors (29)

(1)
(2)
(3)
(4)

(5)

(6)
(7)

(8)

(9)
(10)

the local planner delta(c,n): is segment cn in C-free?

PrObabiIiStiC Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

N « 0
F « 0
loop
¢ «~ a randomly chosen free
configuration
N, «~ a set of candidate neighbors
of ¢ chosen from N
N « N U {c}
for all n€ N., in order of
increasing D(e,n) do
if -same_connected.component(c,n)
AA(e,n) then
4 E «~ EU{(c,n)}
update R’'s connected
components

 Start with a random sampling of points in C-free

 Roadmap is stored as set of trees for space
efficiency

* trees encode connectivity, cycles don't
change it. Additional edges are useful for
shorter paths, but not for completeness

* Augment roadmap by selecting additional
sample points in areas that are estimated to be
“difficult”

Probabilistic Roadmaps

Roadmap adjusts to the density of free space and is more connected around the obstacles
Size of roadmap can be adjusted as needed

More time spent in the “learning” phase ==> better roadmap

Efficient, easy to implement, applicable to many types of scenes
Well-suited for high #dof
No discretization (sample from a continuous space)
Shown to be probabilistically complete
finds a solution, if one exists, with probability —> 1 as the nb of samples increases

Leading motion planning technique, Embraced by many groups, many variants of PRM’s, used in
many type of scenes/applications (PRM*, FMT* (fast marching tree), ...)

Sampling-based planning

Geometric planners:
e hard to construct C-obstacles except for simple cases (2d, no rotation)
Grid-based planners:

e grid has uniform resolution and uses too much large for high #dof
e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360

Sampling-based planners

« Sample and generate a sparse representation of C-free

* Potential field planners

Potential field methods [Latombe et al, 1992]

Define a potential field
Robot moves in the direction of steepest descent on potential function

|deally potential function has global minimum at the goal, has no local
minima, and is very large around obstacles

- Algorithm outline:
- place a regular grid over C-space

- search over the grid with potential function as heuristic

hitps://www.youtube.com/watch?v=r9FD7P76zJs

https://www.youtube.com/watch?v=r9FD7P76zJs

Potential field methods

Pro:
Framework can be adapted to any specific scene
- Con:
- can get stuck in local minima

Potential functions that are minima-free are known, but expensive to compute

Example: RPP (Randomized path planner) is based on potential functions
Escapes local minima by executing random walks
- Successfully used to
- perform riveting ops on plane fuselages

- plan disassembly operations for maintenance of aircraft engines

Demos

DARPA challenges

» [ostered the development of self-driving vehicles
e 2004: noone finished the course
« 2005:

« 132 micourse, inthe desert in Nevada

* 5 vehicles finished the race, with Stanford “Stanley” in first place, the first
autonomous vehicle to ever finish a race (Stanley now at the Smithsonian Air &
Space museum)

« 2007

* Required teams to build an autonomous vehicle capable of driving in traffic and
performing complex maneveurs such as merging, passing and parking

* 5vehicles finished the race, with CMU “Boss” in first place, and Stanford “Junior”
in second.

DARPA challenges

 Planners: Both graph search and incremental tree-based
« CMU: lattice graph in 4D (x,y, orientation, velocity), search with D*
« Stanford: incremental sparse tree of possible maneuvers, hybrid A*
* Virginia Tech: graph discretization of possible maneuvers, search with A*

« MIT: variant of RRT with biased sampling

e A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden, Michal Cap, Sze Zheng
Yong, Dmitry Yershov, and Emilio Frazzoli https://arxiv.org/pdf/1604.07446.pdf

https://arxiv.org/pdf/1604.07446.pdf

DARPA 2007, Stanford team

http://robots.stanford.edu/papers/junior08.pdf
e uses hybrid A*

Junior: The Stanford Entry in the Urban Challenge

Michael Montemerlo', Jan Becker?, Suhrid Bhat?, Hendrik Dahlkamp', Dmitri Dolgov’,
Scott Ettinger?, Dirk Haehnel', Tim Hilden?, Gabe Hoffmann', Burkhard Huhnke?,
Doug Johnston!, Stefan Klumpp?, Dirk Langer?, Anthony Levandowski', Jesse Levinson®,
Julien Marcil?, David Orenstein', Johannes Paefgen’, Isaac Penny', Anna Petrovskaya’,
Mike Pflueger?, Ganymed Stanek?, David Stavens', Antone Vogt', and Sebastian Thrun!

IStanford Artificial Intelligence Lab, Stanford University, Stanford CS 94305
2Electronics Research Lab, Volkswagen of America, 4009 Miranda Av., Palo Alto, CA 94304
%Intel Research, 2200 Mission College Blvd., Santa Clara, CA 95052
. . “Robert Bosch LLC, Research and Technology Center, 4009 Miranda Ave, Palo Alto, CA 94304
) * > >) b

e Stanford’s A*-based planner in action

Abstract
https://www.youtube.com/watch?v=gXZt-B7iUyw

This article presents the architecture of Junior, a robotic vehicle capable of navi-
gating urban environments autonomously. In doing so, the vehicle is able to select
its own routes, perceive and interact with other traffic, and execute various urban
driving skills including lane changes, U-turns, parking, and merging into moving
traffic. The vehicle successfully finished and won second place in the DARPA Ur-
ban Challenge, a robot competition organized by the U.S. Government.

1 Introduction

http://robots.stanford.edu/papers/junior08.pdf
https://www.youtube.com/watch?v=qXZt-B7iUyw

DARPA

Currently, RACER challenge for off-road autonomous vehicles

https://www.darpa.mil/news-events/2023-04-11

http://www.apple.com
https://www.darpa.mil/news-events/2023-04-11

https://www.youtube.com/watch?v=QR3U1dgc5RE
https://www.youtube.com/watch?v=QR3U1dgc5RE

robot phase space

PRM: WAk
Probabilistic Y '
Roadmap * '

Method
for robotics

- ‘)HQL Lab

https://www.youtube.com/watch?v=tIFVobHENPCI

https://www.youtube.com/watch?v=tlFVbHENPCI
https://www.youtube.com/watch?v=tlFVbHENPCI

fRRl PR | ‘t ps:// Vi om/ =gP6MRe_IHFo
rnp r n r pr e e
6M
h?v=
atc
be.c
utu
https:
)
C
j
O
O
C
|
(M
M
)
O
O
|
a
O
C

)|

https://www.youtube.com/watch?v=gP6MRe_IHFo
https://www.youtube.com/watch?v=gP6MRe_IHFo

Project 7

Heuristical motion planning

Implement (x,y,theta)-planning for a polygonal robot moving with translation and rotation in 2D using one of:

o A*
e Atree (RRT)
e A probabilistic roadmap (PRM)

./mouse2

.

mouse click at (x=654, y=70)

mouse click at (x=732, y=25)

mouse click at (x=619, y=14)

BUILDING RRT...

RRT BUILD TIME = 0.046529 seconds
CALCULATING SHORTEST PATH...

SHRT PATH CALC TIME = 0.000084 seconds
OPTIMIZING PATH

PATH OPTIMIZATION TIME = 0.018946 seconds
mouse click at (x=667, y=391)

mouse click at (x=729, y=387)

mouse click at (x=729, y=302)

mouse click at (x=681, y=301)

BUILDING RRT...

RRT BUILD TIME = 0.012920 seconds
CALCULATING SHORTEST PATH...

SHRT PATH CALC TIME = 0.000008 seconds
OPTIMIZING PATH

PATH OPTIMIZATION TIME = 0.010743 seconds
mouse click at (x=357, y=91)

mouse click at (x=412, y=90)

mouse click at (x=411, y=53)

mouse click at (x=350, y=53)

mouse click at (x=426, y=384)

mouse click at (x=426, y=317)

mouse click at (x=344, y=318)

BUILDING RRT...

RRT BUILD TIME = 0.418595 seconds
CALCULATING SHORTEST PATH...

SHRT PATH CALC TIME = 0.010016 seconds
OPTIMIZING PATH

PATH OPTIMIZATION TIME = 0.030505 seconds
mouse click at (x=347, y=208)

mouse click at (x=269, y=119)

mouse click at (x=217, y=161)

mouse click at (x=281, y=300)

BUILDING RRT...

RRT BUILD TIME = 0.246371 seconds
CALCULATING SHORTEST PATH...

SHRT PATH CALC TIME = 0.001665 seconds
OPTIMIZING PATH

PATH OPTIMIZATION TIME = 0.019666 seconds
mouse click at (x=434, y=145)

mouse click at (x=450, y=132)

mouse click at (x=458, y=144)

BUILDING RRT...

RRT BUILD TIME = 1.057304 seconds
CALCULATING SHORTEST PATH...

SHRT PATH CALC TIME = 0.027927 seconds
OPTIMIZING PATH

PATH OPTIMIZATION TIME = 0.036774 seconds

