
3. Approximate path planning

csci3250: Computational Geometry

Laura Toma

Bowdoin College

Path Planning Approaches

• Combinatorial / geometric planers
• Exact: Compute C-free geometrically
• Comments

• This gives complete planners

• Works beautifully in 2D and for some simple cases in 3D

• Worst-case bound for combinatorial complexity of C-objects in 3D is high

• A complete planner in 3D runs in

• Impractical for high #dof

• Approximate planners

• Approximate C-free

O(2n#dof)

Approximate path planning

Knowing C-obstacles is like having a map: You know the roads and you can
make a plan on how to get to the goal.

R

target

we are able to check, for any given
placement p: is p in C-free?

C-obstacles not known

Without knowing the C-obstacles you are in the dark.

• Idea: Approximate C-free

• Approaches

• Space partitioning/grid-based planners with A*

• and variants (weighted A*, D*, ARA*,…)

• Sampling-based

• Rapidly-Exploring Random Tree (RRT)

• Probabilistic RoadMap (PRM)

• Potential field planners

• Hybrid methods combing ideas from all of the above

Approximate path planning

Grid-based planners with A*

R
robot

start

target

Grid based planners “pixelize” the space

R
robot

Let’s say we have a robot moving in 2d without rotation and we
want to implement a grid-based planner.

C-space=(x, y)

δx

Kx =
Xmax

δx

δy

Ky =
Ymax

δy

We decide what resolution we want on each axis, and from here
we get the size of the grid in that dimension.

e.g. we can sample C-space= with a grid
of size

(x, y)
k = 1024 × 1024

C-space sampled with a grid

C-space=(x, y)

• Sample C-space with a uniform grid/lattice

• This “pixelizes" the C-space (pixels/voxels)

• Search for a path from start to end through “free” space

• Dijkstra/A* and variants

• Graph is implicit, given by lattice topology: move +/-1 in each direction,
possibly diagonals

Grid-based planners with A*

Dijkstra’s algorithm

• It’s basically a best-first search

• Initialize: ,

• Repeat: select the best vertex (closest to start), and relax its edges

dist[v] = ∞, dist[s] = 0

Dijkstra(vertex s)

• initialize

• for all v: dist[v] = , done[v]=false, pred[v]=null

• dist[s] = 0, PQ.insert(<s, dist[s]>)

• while PQ not empty

• = PQ.deleteMin()

• mark u as done

• for each edge (u,v), if v not done:

• alt = dist[u] + edge(u,v)

• if alt < dist[v]

• dist[v] = alt, PQ.decreaseKey(v, dist[v])

∞

(u, dist[u])

requires a structure that can search, or a PQueue with additional book-keeping

//claim: dist[u] is the shortest path from s to u

insert the start

• Data structures

• PQ of
• priority(v):

(u, dist[u])
dist[v]

• Keeps track of :
• = cost of getting from to

• : true if u has been explored

• : predecessor of on the (optimal) path from to

dist[v] start v
done[u]
pred[v] v start v

Dijkstra(vertex s)

• initialize

• for all v: dist[v] = , done[v]=false, pred[v]=null

• dist[s] = 0 , PQ.insert(<s, dist[s]>)

• while PQ not empty

• (u, dist[u]) = PQ.deleteMin()

• if u is done, continue

• mark u as done

• for each neighbor v of u, if v not done and isFree(v):

• alt = dist[u] + edge(u,v)

• if alt < dist[v]

• dist[v] = alt, PQ.insert(v, dist[v])

∞

isFree(v): is v in C-free

On a grid-graph

u is a placement,
and also a pixel

on the grid

4-connected 8-connected

(x, y) (x + δx, y)(x − δx, y)

(x, y + δy)

(x, y − δy)

Grid graphs in 2d

Neighbors of u = (x, y)
u = (x, y) is a placement, and also a pixel on the grid

neighbors of v = (x, y, θ)

Grid graphs in 3d

6-connected:

or, connected diagonally as well

(x + δx, y, θ)
(x, y + δy, θ)

(x, y, θ + δθ)

(x − δx, y, θ)
(x, y − δy, θ)

(x, y, θ − δθ)

//return true if placement p is in C-free

//put differently, return true if placing the robot R at p does not intersect any obstacle

bool isFree(placement p, the robot, the obstacles)

• translate and rotate the robot to p

• check whether any edge of the robot intersects any of the obstacles

isFree(v): is v in C-free

Would my robot, if placed at this point p, intersect any obstacle?

 or or or …(x, y) (x, y, θ) (x, y, z, θx, θy, θz)p is a point in C-space:

Motion planners assume the existence of a collision-detection routine that can
check whether a given configuration, or path segment, is in free space.

C-space: 3D
2D: robot can translate and rotate

configuration p: (x, y, θ)

R

R(8,5,0)

(8,5,0): free

We need to write: isFree(, Robot R, Obstacles S)p = (x, y, θ)

EXAMPLE

R

R(0,0,0)

R

R(8,15,45)

(8,15,45): not free

EXAMPLE

R

R(0,0,0)

• Evaluates vertices based on their distance to the start

• priority(v) =

• Dijkstra will explore a large portion of the graph before reaching the target. Would be

nice if we could cut down the number of nodes traversed before reaching the goal

dist(v)

Dijkstra => A* https://qiao.github.io/PathFinding.js/visual/

• Idea: Steer the search towards the goal (while keeping solution optimal)

• priority(v) :

• dist(v): cost of getting from to

• h(v): estimate of the cost from to

• Dijkstra is A* with

f(v) = dist(v) + h(v)
start v

v goal
h(v) = 0

Dijkstra

A*

https://qiao.github.io/PathFinding.js/visual/

• https://qiao.github.io/PathFinding.js/visual/

• https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstras_progress_animation.gif

• https://www.youtube.com/watch?v=DINCL5cd_w0

• https://www.google.com/search?client=firefox-b-1-d&q=dijkstra+
+vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-
AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo

•

Dijkstra => A*

Animations

https://qiao.github.io/PathFinding.js/visual
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstras_progress_animation.gif
https://www.youtube.com/watch?v=DINCL5cd_w0
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo
https://www.google.com/search?client=firefox-b-1-d&q=dijkstra++vs+A*+algorithm&tbm=vid&sa=X&ved=2ahUKEwic2fXNvMr-AhV1FFkFHcSxB_kQ0pQJegQICxAB&biw=1313&bih=731&dpr=2#fpstate=ive&vld=cid:02bef27f,vid:g024lzsknDo

• The heuristic is called admissible if is smaller than the true cost of getting
from v to the target.

• Theorem: If is admissible then A* will return an optimal solution.

• Put differently if is too high, the algorithm loses optimality

• h(v) = 0 will always work

• higher will steer the search more => more efficient

• The closer h(v) is to the true cost of getting from v to goal, the more efficient

• if is too high => A* not optimal

• In many situations a safe admissible heuristic is

 EuclidianDistance(

h(v) h(v)

h(v)
h(v)

h(v)

h(v)

h(v) = v, goal

A*

admissible because the cost of getting from a to b is the Euclidian distance from a to b≥

generic A*(placement start, goal)

• initialize

• for all v: dist[v] = , f[v] = , pred[v] = null, done[v]=false

• dist[s] = 0, f[s] = h(s, target), PQ.insert(<s, f[s]>)

• while PQ not empty

• <u, f[u]> = PQ.deleteMin()

• for each neighbor v, if not done[v] and isFree(v)

• alt = dist[u] + edge(u,v)

• if alt < dist[v]

• dist[v] = alt; f[v] = dist[v] + h(v, target);

• pred[v] = u; PQ.decreaseKey(<v, f[v]>)

∞ ∞

isFree(v): is v in C-free

 or or or …(x, y) (x, y, θ) (x, y, z, θx, θy, θz)

Grid-based planners with A*

• The paths may be longer than true shortest path in C-space
• Not complete, but resolution complete

• probability of finding a solution, if one exists —> 1 as the resolution of
the grid increases

• While searching, it finds what points are in C-free, so it constructs C-free. Can
interleave the construction with the search (ie construct only what is
necessary). Or can construct it all at once (occupancy grid).

• simple to understand/implement
• work in any dimension

• size and quality of path depends on the discretization of the problem
• not practical in high-d spaces

• e.g. 6 dof: 1000 x 1000 x 1000 x 360 x 360 x 360

• weighted A*

• ==> solution is no worse than optimal

• anytime A*

• use weighted A* to find a first solution ; then use A* with first

solution as upper bound to prune the search

• real-time replanning

• if the underlying graph changes, it usually affects a small part of
the graph ==> don’t run search from scratch

• D*: efficiently recompute SP every time the underlying graph
changes

c ⋅ h() (1 + c) ×

A* variants

• Finer resolution => better paths but slower

• C-free can be pre-computed (occupancy grid) or computed incrementally

• One-time path planning vs many times; static vs dynamic environment

• fixed resolution vs. multi-resolution techniques

Sampling-based planning

• Geometric planners:

• hard to construct C-obstacles except for simple cases (2d, no rotation)

• Grid-based planners:

• grid has uniform resolution and uses too much large for high #dof
e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360

• Sampling-based planners
• Sample and generate a sparse representation of C-free

• Potential field planners

Sampling-based planners

R

target

we are able to check, for
any given placement p:

is p in C-free?

C-free is not known

We don’t know the C-obstacles, but we’ll assume that we have a
function that can check whether a given configuration is free.

//return true if placement p is in C-free

//put differently, return true if placing the robot R at p does not intersect any obstacle

bool isFree(placement p, the robot, the obstacles)

• translate and rotate the robot to p

• check whether any edge of the robot intersects any of the obstacles

isFree(v): is v in C-free

 or or or …(x, y) (x, y, θ) (x, y, z, θx, θy, θz)p is a point in C-space:

Would my robot, if placed at this point p, intersect any obstacle?

All planners need a collision detection function

• Idea: Sample C-free and compute a roadmap that captures its connectivity

• Single-query, incremental search planners

• Construct a graph/roadmap to connect and

• Reconstruct for different pairs

• E.g. RRT (rapidly-exploring random tree) and variants

• Multiple-query planners

• Construct a graph/roadmap and use it for any pairs

• E.g. PRM (probabilistic roadmap) and variants

start end

(start, end)

(start, end)

Sampling-based planning

History
• Dijkstra 1950s

• A* 1960s

• PRM 1996

• RRT 1998

• RRT* 2010

• Efficient, easy to implement, applicable to many types of scenes

• Well-suited for high #dof

• Shown to be probabilistically complete

• Finds a solution, if one exists, with probability —> 1 as the nb. of samples
increases

• Leading motion planning technique, embraced by many groups, many variants,
used in many type of scenes/applications.

• PRM*, FMT* (fast marching tree), …

• No discretization (sample from a continuous space)

• But: Path not optimal, time may be unbounded

Probabilistic Roadmaps and RRTs

The RRT

• Incrementally build a tree rooted at
“start” outwards, while trying to
determine if a path exists at each
step

• Original paper:
• https://www.cs.cmu.edu/~motionplanning/

papers/sbp_papers/PRM/randtrees_02.pdf

(LaValle, 1998)

NEW_CONFIG(
• if is not free, return false

• if segment is not in C-free, return false

(q, qnear, qnew)
q

qnearqnew

https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/PRM/randtrees_02.pdf
https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/PRM/randtrees_02.pdf

https://www.youtube.com/watch?v=Ob3BIJkQJEw

PRM

• Roadmap adjusts to the density of free space and is more connected around
the obstacles

• Size of roadmap can be adjusted as needed

• More time spent in the “learning” phase ==> better roadmap

• Built once, re-used many times, used in static environments

RRT

• Used in changing environments

• Faster to build than PRM

Probabilistic Roadmaps and RRTs

R

R

C-space: 3D2D: robot can translate and rotate

configuration p: (x, y, θ)

R(8,5,0)

R(8,15,45)

(8,5,0): free

(8,15,45): not free

We need to write: isFree(, Robot R, Obstacles S)p = (x, y, θ)

isFree(v): is v in C-free

Also need a segment collision detection function

bool localPlanner(placement p, placement q, the robot, the obstacles)

 or or or …(x, y) (x, y, θ) (x, y, z, θx, θy, θz)//p, q are points in C-space:

Is segment pq in C-free?

Probabilistic roadmaps

• Roadmap construction phase

• Start with a sampling of points in C-free and try to connect them

• Two points are connected by an edge if a simple quick planner can find
a path between them

• This will create a set of connected components

• Roadmap query phase

• Use roadmap to find path between any two points

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

• Generic-Sampling-Based-Roadmap:

• for i = 1 to N:

• generate a random point in

• if isFree(p), add to R

• add to R

• for each point in R:

• = { closest neighbors of in R}

• for each neighbor in :

• if there is a collision-free local path from to and there is not already an
edge from to then add an edge from to in the roadmap R

pi C

p

pstart

pi

N(pi) pi

q N(pi)

pi q
pi q pi q

• Variants

• how they select the initial n samples from C

• e.g. return a set of n points arranged on a regular grid in C, random points, etc

• how they select the neighbors

• return the k nearest neighbors of p in V

• return the set of points lying in a ball centered at p of radius r

• Often used: samples arranged in a 2-dimensional grid, with nearest 4 neighbors (2d)

Probabilistic Roadmaps

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

 the local planner delta(c,n): is segment cn in C-free?

• Start with a random sampling of points in C-free

• Roadmap is stored as set of trees for space
efficiency

• trees encode connectivity, cycles don’t
change it. Additional edges are useful for
shorter paths, but not for completeness

• Augment roadmap by selecting additional
sample points in areas that are estimated to be
“difficult”

• Roadmap adjusts to the density of free space and is more connected around the obstacles

• Size of roadmap can be adjusted as needed

• More time spent in the “learning” phase ==> better roadmap

Probabilistic Roadmaps

• Efficient, easy to implement, applicable to many types of scenes

• Well-suited for high #dof

• No discretization (sample from a continuous space)

• Shown to be probabilistically complete

• finds a solution, if one exists, with probability —> 1 as the nb of samples increases

• Leading motion planning technique, Embraced by many groups, many variants of PRM’s, used in
many type of scenes/applications (PRM*, FMT* (fast marching tree), …)

Sampling-based planning

• Geometric planners:

• hard to construct C-obstacles except for simple cases (2d, no rotation)

• Grid-based planners:

• grid has uniform resolution and uses too much large for high #dof
e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360

• Sampling-based planners
• Sample and generate a sparse representation of C-free

• Potential field planners

Potential field methods [Latombe et al, 1992]

• Define a potential field
• Robot moves in the direction of steepest descent on potential function

• Ideally potential function has global minimum at the goal, has no local
minima, and is very large around obstacles

• Algorithm outline:
• place a regular grid over C-space
• search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

https://www.youtube.com/watch?v=r9FD7P76zJs

Potential field methods

• Pro:
• Framework can be adapted to any specific scene

• Con:
• can get stuck in local minima
• Potential functions that are minima-free are known, but expensive to compute

• Example: RPP (Randomized path planner) is based on potential functions
• Escapes local minima by executing random walks
• Successfully used to

• perform riveting ops on plane fuselages
• plan disassembly operations for maintenance of aircraft engines

Demos

DARPA challenges

• Fostered the development of self-driving vehicles

• 2004: noone finished the course

• 2005:

• 132 mi course, in the desert in Nevada

• 5 vehicles finished the race, with Stanford “Stanley” in first place, the first
autonomous vehicle to ever finish a race (Stanley now at the Smithsonian Air &
Space museum)

• 2007

• Required teams to build an autonomous vehicle capable of driving in traffic and
performing complex maneveurs such as merging, passing and parking

• 5 vehicles finished the race, with CMU “Boss” in first place, and Stanford “Junior”
in second.

• Planners: Both graph search and incremental tree-based

• CMU: lattice graph in 4D (x,y, orientation, velocity), search with D*

• Stanford: incremental sparse tree of possible maneuvers, hybrid A*

• Virginia Tech: graph discretization of possible maneuvers, search with A*

• MIT: variant of RRT with biased sampling

• A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden, Michal Cáp, Sze Zheng
Yong, Dmitry Yershov, and Emilio Frazzoli https://arxiv.org/pdf/1604.07446.pdf

DARPA challenges

• talk by Sertac Karaman in Darpa 2007 MIT team:

https://arxiv.org/pdf/1604.07446.pdf

DARPA 2007, Stanford team

http://robots.stanford.edu/papers/junior08.pdf
• uses hybrid A*

https://www.youtube.com/watch?v=qXZt-B7iUyw

• Stanford’s A*-based planner in action

http://robots.stanford.edu/papers/junior08.pdf
https://www.youtube.com/watch?v=qXZt-B7iUyw

DARPA

• Currently, RACER challenge for off-road autonomous vehicles

https://www.darpa.mil/news-events/2023-04-11

http://www.apple.com
https://www.darpa.mil/news-events/2023-04-11

https://www.youtube.com/watch?v=QR3U1dgc5RE (start at min 10 for RRT)

https://www.youtube.com/watch?v=QR3U1dgc5RE
https://www.youtube.com/watch?v=QR3U1dgc5RE

https://www.youtube.com/watch?v=tlFVbHENPCI

https://www.youtube.com/watch?v=tlFVbHENPCI
https://www.youtube.com/watch?v=tlFVbHENPCI

https://www.youtube.com/watch?v=gP6MRe_IHFoComparison of RRT, PRM (MIT course project)

https://www.youtube.com/watch?v=gP6MRe_IHFo
https://www.youtube.com/watch?v=gP6MRe_IHFo

Project 7

