
csci3250: Computational Geometry

Laura Toma


Bowdoin College

Combinatorial path planning

2. Polygonal robot among obstacles in 2D



• point robot moving among arbitrary polygons in 2D

• polygonal robot moving among arbitrary polygons in 2D

Path planning in 2D

today 

screenshot from  internet

 translation+rotationtranslation only 

2 dof 3 dof



• Degrees of freedom: How many independent ways can the robot move? 
• translation X and Y  => 2 dof 
• translation+ rotation => 3 dof

• Physical space: Space where robot moves around
• e.g. we are in 2D 

translation only

Physical space vs Degrees of freedom

translation + rotation

R(0,0)

reference point

6

5

R(6,4)

4
R(0,0,0)

reference point

6

5

R(6,4,45)

454



• A placement of a robot is a set of coordinates that specify where the robot is in 
space.  One coordinate per degree of freedom (dof)

• translation only:  a placement of the robot is specified by (x, y) 

• translation+ rotation:  a placement of the robot is specified by (x, y, θ)

translation only

Placement

translation + rotation

R(0,0)

reference point

6

5

R(6,4)

4 R(0,0,0)

reference point

6

5

R(6,4,45)

454

R(x, y) R(x, y, θ)



• The parametric space of the robot = space of all possible placements of the robot

• A point in C-space corresponds to placement of the robot in physical space

translation only

Configuration space (C-space)

translation + rotation

R(0,0)

reference point

6

5

R(6,4)

4 R(0,0,0)

reference point

6

5

R(6,4,45)

454

C-space = all placements  (x, y) C-space = all placements   (x, y, θ)



physical space robot C-space

2D polygon, translation only 2D

2D polygon, translation + rotation 3D

3D polygon, translation + rotation 6D

3D robot with arms and joints many dof

Physical Space and C-space

R(x, y)

R(x, y, θ)

R(x, y, z, θx, θy, θz)



Path planning in C-space

R(0,0)

R(1,1)

R(2,2)

R(3,1)

R(4,.5,)

• The robot moves in physical space. Any path for robot in physical space corresponds to 
a a set of placements in C-space ==> a path in C-space 

• Path in physical space <==> path in C-space 

Path planning is done in C-space 
because it captures the dof of the robot



• A configuration (x,y, …) in C-space is free 
if placing R(x,y, …) does not intersect any 
obstacle, and forbidden otherwise

• In general if we have a k-dimensional C-
space:  a configuration  is 
free if placing  does not 
intersect any obstacle, and forbidden 
otherwise

(x1, x2, . . xk)
R(x1, x2, . . , xk)

(x,y)

placement or robot at 
(x,y)

does not intersect 
obstacles

this point is NOT 
in free C-space, 
it’s forbidden

Free and forbidden points in C-space



Not every placement R(x, y) “outside” the obstacle is free of collisions.

Physical Obstacles ==> “Extended” C-obstacles

Extended obstacle in C-space: 

the set of placements (x,y) so that R(x,y) intersects that obstacle 



Extended obstacles or C-obstacles

•  Given obstacle O and robot R

• C-obstacle = the placements of R that cause intersection with O



Extended obstacles or C-obstacles

•  Given obstacle O and robot R

• C-obstacle = the placements of R that cause intersection with O



•  Given obstacle O and robot R

• C-obstacle = the placements of R that cause intersection with O

Extended obstacles or C-obstacles

O



•  Given obstacle O and robot R

• C-obstacle = the placements of R that cause intersection with O

O

C-obstacle corresponding to O

O

Extended obstacles or C-obstacles



Class work

robot R

Find the corresponding C-obstacles

• Draw a small set of obstacles such that their C-obstacles overlap. 

• Draw a scene of obstacles such that free physical space is not disconnected, 

but the the free C-space is disconnected. 



Class work

r

robot

Find the corresponding C-obstacles



r r
r

robotr

robot

r

robot
r

rrr

r

r

robot



Class work

Find the corresponding C-obstacles

robot

translation only



Polygonal robot translating in 2D

Any placement R(x, y) along the path is in free C-space and thus outside the C-obstacles 

We want a collision free path for the robot from start to end

O

O

O



polygonal robot R among obstacles

Polygonal robot translating in 2D

O

O

OO

O

O

point robot among C-obstacles 



Polygonal robot translating in 2D

Algorithm (list of obstacles, robot R)
• For each obstacle O, compute the corresponding C-

obstacle
• Compute the union of C-obstacles, then compute its 

complement. That’s the free C-space

//planning for R  reduces to planning for point-robot 
moving in free C-space

• Compute a roadmap of free C-space
• a trapezoidal decomposition graph + BFS
• or,  a visibility graph + Dijkstra

O

O

O



How to compute C-obstacles?



• Let  two sets of points in the plane 


•                    Minkowski sum


• Interpretation:   consider set  to be centered at the origin. Then  
represents many copies of , translated by , for all ; i.e. place a copy of 

 centered at each point of .

A, B
A ⊕ B = {x + y |x ∈ A, y ∈ B}

A B ⊕ A
A y y ∈ B

A B

Minkowski sum

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B +  A

y

y

y

x, y vectorsvector sum

B ⊕ A



Minkowski sum

• What is the boundary of ? 


•  Slide  so that the center of  traces the boundary of  

B ⊕ A
A A B

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B +  A

y

y

y

B ⊕ A



C-obstacles as Minkowski sums

  is not quite the C-obstacle of B  B ⊕ R

• Consider a robot R with the reference in the lower left corner

BB
x

x+R

R translated by x

B

B +  R

R R

R

R

R
RR

R

R
R

R

B ⊕ R



BB
x

-R translated by x

B

B +  -R
-R

R

-R: R reflected by origin

-R

-R

-R

-R
-R -R

-R
-R

-R
-R

-R-R

The C-obstacle of     is   B B ⊕ −R(0,0)

C-obstacles as Minkowski sums

B ⊕ −R



R



R

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R

R

extended obstacle 



-R
R



-R
R

-R

-R

-R -R

-R

-R-R

-R-R

O ⊕ −R(0,0)



-R
R

-R

-R

-R -R

-R

-R-R

-R-R



-R
R

R

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R

-R

-R

-R -R

-R

-R-R

-R-R

extended obstacle O ⊕ −R(0,0)



-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-RR

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R

extended obstacle O ⊕ −R(0,0)



O

C-obstacle corresponding to O

Slide so that R touches the obstacle



O

C-obstacle corresponding to O C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R  
traces the edges of obstacle

Find O + (-R)
Slide so that R touches the obstacle



O

C-obstacle corresponding to O C-obstacle corresponding to O

R

-R

Slide so that R touches the obstacle Slide so that centerpoint of -R  
traces the edges of obstacle

Find O ⊕ −R



R



R
R

R
R

R R

R
R

R

R

R
R

R
R

R

R

extended obstacle 



R
R

R
R

R R

R
R

R

R

R
R

R
R

R

R

extended obstacle 



R
-R



R
-R

-R
-R

-R
-R

-R
-R

-R

-R
-R

-R

-R
-R

-R

-R-R



R
-R

-R-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R-R
-R

-R-R



R
-R

- - -
- -

-
-

-
- -

-
-

-
-

-
-

---
-

--

R

R
R

R
R

R R

R
R

R
R

R
R

R
R

R

Same!



Recap 
• We want to compute extended obstacles 
• We expressed extended obstacles as Minkowski sum

R

-R

• How do we compute Minkowski sums?



• To compute: Place -R at all vertices of O and compute convex hull 

Convex robot with convex polygon

R

-R



• Each edge in R, O will cause an edge in O ⊕ −R

•  has O(m+n) edgesO ⊕ −R

• Even better, it is possible to compute in  time by walking along the 
boundaries of R and O

O(m + n)

Convex robot with convex polygon

C-obstacle corresponding to O

R

-R

parallel edges will cause same edge



2D

• convex + convex polygons

• The Minkowski sum of two convex polygons with , and  edges respectively, 
is a convex polygon with  edges and can be computed in  
time. 

• convex + non-convex polygons

• Triangulate and compute Minkowski sums for each pair [convex polygon, 
triangle], and take their union

• Size of Minkowski sum:   for each triangle => 

• non-convex + non-convex polygons

• Size of Minkowski sum: 

3D 


• it gets worse . . . 

n m
n + m O(m + n)

O(m + 3) O(m ⋅ n)

O(n2 ⋅ m2)

Computing extended obstacles: What’s known 



So far we’ve considered only translation

Next: Translation + Rotation



Polygonal robot in 2D with rotations 

• Physical space is 2D 


• A placement is specifies by 3 parameters:   ==> C-space is 3D. R(x, y, θ)





• What does a C-obstacle look like when rotations are allowed? 

O

R(0,0,  0)

Polygonal robot in 2D with rotations 

θ
x

y



O

R(0,0,  0)

θ
x

y

• What does a C-obstacle look like when rotations are allowed? 



O

R(0,0,20)

θ
x

y

• What does a C-obstacle look like when rotations are allowed? 



O

R(0,0,20)

θ
x

y

• What does a C-obstacle look like when rotations are allowed? 



O

R(0,0,θ)

θ
x

y

A C-obstacle is a 3D shape, with curved boundaries  

• Imagine moving a vertical plane through C-space.  Each position of the plane will 
correspond to a fixed .

• Each cross-section of a C-obstacle is a Minkowski sum  

• => twisted pillar

θ

O ⊕ −R(0,0,θ)





Polygonal robot in 2D with rotations 

• Planner: 


1. Compute C-obstacles and C-free

2. Compute a decomposition of free space into simple cells 

3. Construct a roadmap 

4. BFS on roadmap 

space is 3D

Difficult to construct a good cell decomposition for curved 3D space

What’s known: 
• C-space is 3D
• Boundary of free space is curved, not polygonal. 

• Combinatorial complexity of free space is  for convex,  for non-convex 
robot

O(n2) O(n3)



An idea to approximate this

One possible approximate 3d roadmap

• Discretize rotation angle and compute a finite number of slices, one for each angle

• For a fixed angle:  you got translational motion planning

• Construct a trapezoidal decomposition for each slice and its roadmap 

• Link them into a 3D roadmap: Add “vertical” edges between slices to allow robot to move 

up/down between slices; these  correspond to rotational moves. 

• Example: Consider two consecutive angles a and b.  If placement (x,y) is in free space in 

slice a, and (x,y) is in free space in slice b, then the 3D roadmap should contain a vertical 

edge between slice a and b at that position

• Is this complete? 

• No, it’s an approximation. 



Combinatorial/geometric path planning: Summary

• Compute the free C-space geometrically (= exactly)
• A geometric planner 

• Compute extended obstacles and free C-space 
• Compute roadmap of free C-space:  trapezoidal decomposition or visibility graph


• Comments
• Complete

• Works beautifully in 2D and for some cases in 3D 


• Worst-case bound for combinatorial complexity of C-objects in 3D is high 

• Unfeasible/intractable for high #dif


• A complete planner in 3D runs in O(2n#dof)


