Combinatorial path planning

2. Polygonal robot among obstacles in 2D

csci3250: Computational Geometry
Laura Toma
Bowdoin College



Path planning in 2D

Q point robot moving among arbitrary polygons in 2D

tod
) - polygonal robot moving among arbitrary polygons in 2D

translation only translation+rotation

2 dof 3 dof

> screenshot from internet



Physical space vs Degrees of freedom

Physical space: Space where robot moves around

e.g. we are in 2D

Degrees of freedom: How many independent ways can the robot move?
translation X and Y => 2 dof

translation+ rotation => 3 dof

. reference point
reference point

translation only translation + rotation




Placement

A placement of a robot is a set of coordinates that specify where the robot is in
space. One coordinate per degree of freedom (dof)

- translation only: a placement of the robot is specified by (x, y)

- translation+ rotation: a placement of the robot is specified by (x, y, 0)

R(6,4,45)

reference point

reference point

translation only translation + rotation

R(x,y) R(x,y,0)



Configuration space (C-space)

The parametric space of the robot = space of all possible placements of the robot

A point in C-space corresponds to placement of the robot in physical space

reference point
reference point

translation only translation + rotation

C-space = all placements (x, y) C-space = all placements (x,y, 0)



Physical Space and C-space

physical space

2D polygon, translation only 2D
R(x,y)
2D polygon, translation + rotation 3D
R(x,y,0)
3D polygon, translation + rotation 6D

R(x,y,z,0, ey’ ez)

3D robot with arms and joints many dof



Path planning in C-space

The robot moves in physical space. Any path for robot in physical space corresponds to
a a set of placements in C-space ==> a path in C-space

Path in physical space <==> path in C-space

Path planning is done in C-space
because it captures the dof of the robot




Free and forbidden points in C-space
- A configuration (x,y, ...) in C-space is free
if placing R(x,y, ...) does not intersect any

obstacle, and forbidden otherwise

/ thls point is NOT
in free C-space,

it's forbidden

placement or robot at
(xy)
does not intersect
obstacles

* In general if we have a k-dimensional C-
space: a configuration (x;, X,, . . x;) is
free if placing R(x{, X, . ., x;,) does not
intersect any obstacle, and forbidden
otherwise



Physical Obstacles ==> “Extended” C-obstacles

Not every placement R(x, y) “outside” the obstacle is free of collisions.

Extended obstacle in C-space:

the set of placements (x,y) so that R(x,y) intersects that obstacle



Extended obstacles or C-obstacles

* Given obstacle O and robot R

e C-obstacle = the placements of R that cause intersection with O




Extended obstacles or C-obstacles

» Given obstacle O and robot R

» C-obstacle = the placements of R that cause intersection with O

- XX%




Extended obstacles or C-obstacles

* Given obstacle O and robot R

e C-obstacle = the placements of R that cause intersection with O

/



Extended obstacles or C-obstacles

* Given obstacle O and robot R

e C-obstacle = the placements of R that cause intersection with O

/

C-obstacle corresponding to O




Class work

Find the corresponding C-obstacles

robot R

 Draw a small set of obstacles such that their C-obstacles overlap.

 Draw a scene of obstacles such that free physical space is not disconnected,

but the the free C-space is disconnected.



Class work

Find the corresponding C-obstacles PRI

robot

hew







Class work

Find the corresponding C-obstacles

robot



Polygonal robot translating in 2D

We want a collision free path for the robot from startto end

Any placement R(x, y) along the path is in free C-space and thus outside the C-obstacles

-

_




Polygonal robot translating in 2D

polygonal robot R among obstacles —» point robot among C-obstacles

> P
_

_




Polygonal robot translating in 2D

Algorithm (list of obstacles, robot R)

- For each obstacle O, compute the corresponding C-
obstacle

- Compute the union of C-obstacles, then compute its

complement. That’s the free C-space /
/Iplanning for R reduces to planning for point-robot T e
moving in free C-space o Na
Compute a roadmap of free C-space / )e

a trapezoidal decomposition graph + BFS \ /

or, a visibility graph + Dijkstra

@




How to compute C-obstacles?



Minkowski sum

« LetA, B two sets of points in the plane

« A@B={x+y|lxeA,ye B} <«—— Minkowski sum

/ T

vector sum X, y vectors

« Interpretation: consider set A to be centered at the origin. Then B @ A
represents many copies of A, translated by y, for all y € B; i.e. place a copy of
A centered at each point of B.

Y+

A translated by vy



Minkowski sum

What is the boundary of B @ A?
Slide A so that the center of A traces the boundary of B

Yy +

A translated by y



C-obstacles as Minkowski sums

 Consider a robot R with the reference in the lower left corner -

X+

R translated by x

B & R is not quite the C-obstacle of B




C-obstacles as Minkowski sums

-l -R |
B -R -R
R - -R
1 -R
R

-Rj R A
-R translated by x B EB —R

-R: R reflected by origin

The C-obstacle of B is B & —R(0,0)






extended obstacle






O & —R(0,0)






B

extended obstacle 0 & —R(0,0)



extended obstacle 0 & —R(0,0)



Slide so that R touches the obstacle

C-obstacle corresponding to O



Slide so that centerpoint of -R

Slide so that R touches the obstacle traces the edges of obstacle

Find O + (-R)

/\r

o N\,

C-obstacle corresponding to O



Slide so that R touches the obstacle

C-obstacle corresponding to O

Slide so that centerpoint of -R
traces the edges of obstacle

Find O @ —R

C-obstacle corresponding to O






@
R
R

®
o

extended obstacle @ ®



extended obstacle















Recap

We want to compute extended obstacles
We expressed extended obstacles as Minkowski sum

How do we compute Minkowski sums?




Convex robot with convex polygon

- To compute: Place -R at all vertices of O and compute convex hull




Convex robot with convex polygon

. Even better, it is possible to compute in O(m + n) time by walking along the
boundaries of R and O

- Each edge in R, O will cause an edge in O @ —R
- O @ —R has O(m+n) edges

parallel edges will cause same edge



Computing extended obstacles: What’s known

2D
convex + convex polygons

The Minkowski sum of two convex polygons with 7, and m edges respectively,
is a convex polygon with n + m edges and can be computed in O(m + n)
time.

convex + hon-convex polygons

Triangulate and compute Minkowski sums for each pair [convex polygon,
triangle], and take their union

Size of Minkowski sum: O(m + 3) for each triangle => O(m - n)
non-convex + non-convex polygons
Size of Minkowski sum: O(n? - m?)
3D

- it gets worse . . .



So far we've considered only translation

'

Next: Translation + Rotation



Polygonal robot in 2D with rotations

* Physical space is 2D

« A placement is specifies by 3 parameters: R(x, y, ) ==> C-space is 3D.




What about LSSy

Rotating Robots? » ~"t
] ////////// {

=\

e Rotation may be
necessary to complete
the task

i
i
i
B
i
i
i
B
i
i
i
B
5
i
i
i
£

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 13




Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

R(0,0, 0) Iy



- What does a C-obstacle look like when rotations are allowed?

R(0,0, 0) Iy



- What does a C-obstacle look like when rotations are allowed?

R(0,0,20) Iy



- What does a C-obstacle look like when rotations are allowed?

R(0,0,20) Iy



A C-obstacle is a 3D shape, with curved boundaries

- Imagine moving a vertical plane through C-space. Each position of the plane will

correspond to a fixed 0.

- Each cross-section of a C-obstacle is a Minkowski sum O & —R(0,0,0)

- => twisted pillar




configuration space




Polygonal robot in 2D with rotations

What’s known:
- C-space is 3D
- Boundary of free space is curved, not polygonal.
. Combinatorial complexity of free space is O(n?) for convex, O(n>) for non-convex

robot

* Planner:

1. Compute C-obstacles and C-free < space is 3D
2. Compute a decomposition of free space into simple cells
3. Construct a roadmap ¢

4. BFS on roadmap

Difficult to construct a good cell decomposition for curved 3D space



An idea to approximate this

One possible approximate 3d roadmap
Discretize rotation angle and compute a finite number of slices, one for each angle
For a fixed angle: you got translational motion planning
Construct a trapezoidal decomposition for each slice and its roadmap
Link them into a 3D roadmap: Add “vertical” edges between slices to allow robot to move

up/down between slices; these correspond to rotational moves.
Example: Consider two consecutive angles a and b. If placement (x,y) is in free space in
slice a, and (x,y) is in free space in slice b, then the 3D roadmap should contain a vertical

edge between slice a and b at that position

Is this complete?



Combinatorial/geometric path planning: Summary

- Compute the free C-space geometrically (= exactly)
- A geometric planner
« Compute extended obstacles and free C-space
« Compute roadmap of free C-space: trapezoidal decomposition or visibility graph
- Comments
« Complete
« Works beautifully in 2D and for some cases in 3D
« Worst-case bound for combinatorial complexity of C-objects in 3D is high
« Unfeasible/intractable for high #dif

#dof

)

« A complete planner in 3D runs in O(2"



