

Combinatorial path planning

2. Polygonal robot among obstacles in 2D

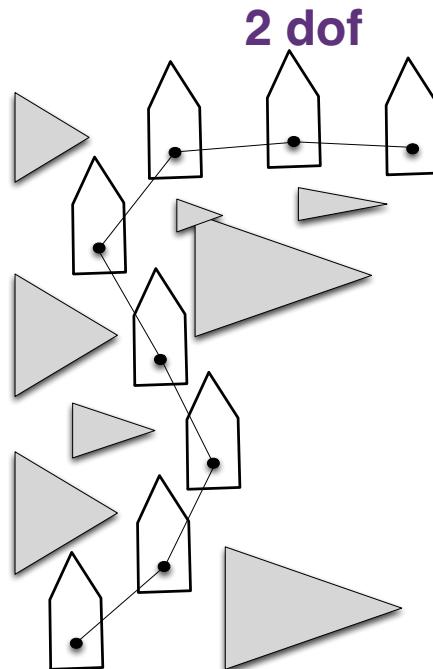
Path planning in 2D

point robot moving among arbitrary polygons in 2D

today

- polygonal robot moving among arbitrary polygons in 2D

translation only



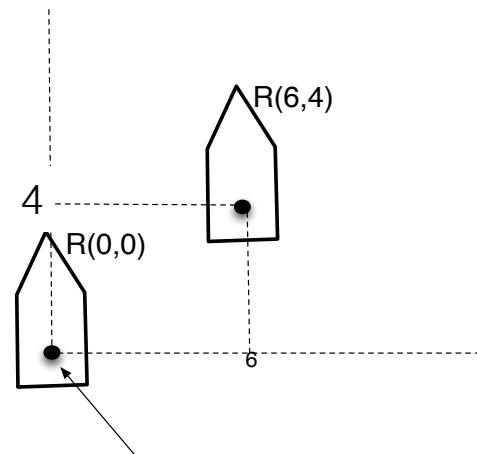
translation+rotation



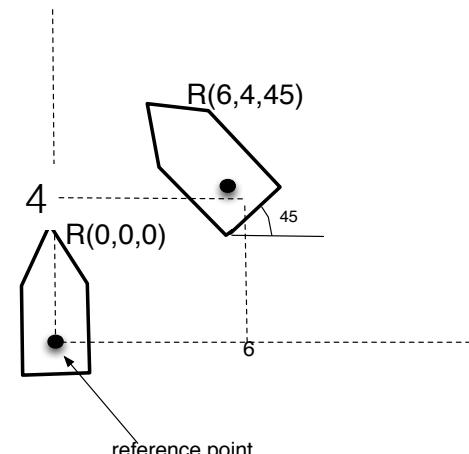
screenshot from internet

Physical space vs Degrees of freedom

- Physical space: Space where robot moves around
 - e.g. we are in 2D
- Degrees of freedom: How many independent ways can the robot move?
 - translation X and Y => 2 dof
 - translation+ rotation => 3 dof



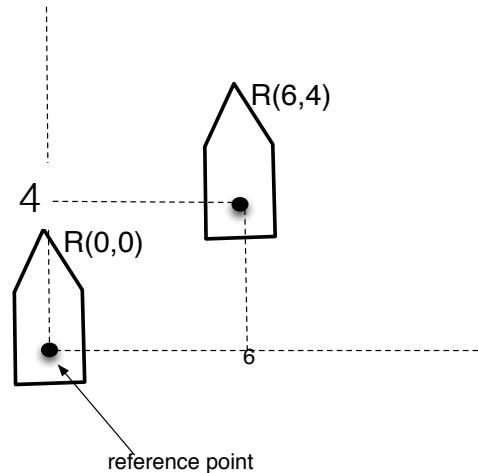
translation only



translation + rotation

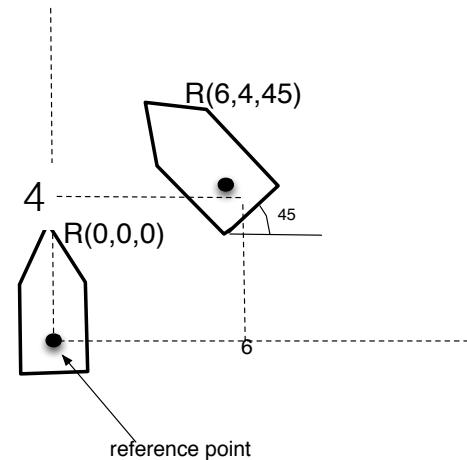
Placement

- A placement of a robot is a set of coordinates that specify where the robot is in space. One coordinate per degree of freedom (dof)
 - translation only: a placement of the robot is specified by (x, y)
 - translation+ rotation: a placement of the robot is specified by (x, y, θ)



translation only

$$R(x, y)$$

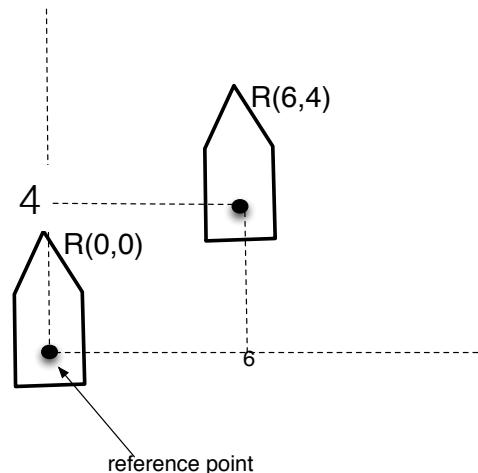


translation + rotation

$$R(x, y, \theta)$$

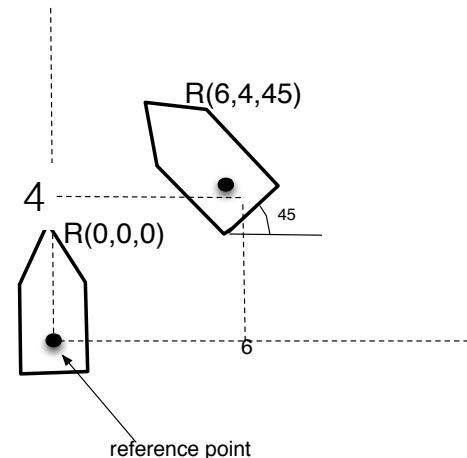
Configuration space (C-space)

- The parametric space of the robot = space of all possible placements of the robot
- A point in C-space corresponds to placement of the robot in physical space



translation only

C-space = all placements (x, y)



translation + rotation

C-space = all placements (x, y, θ)

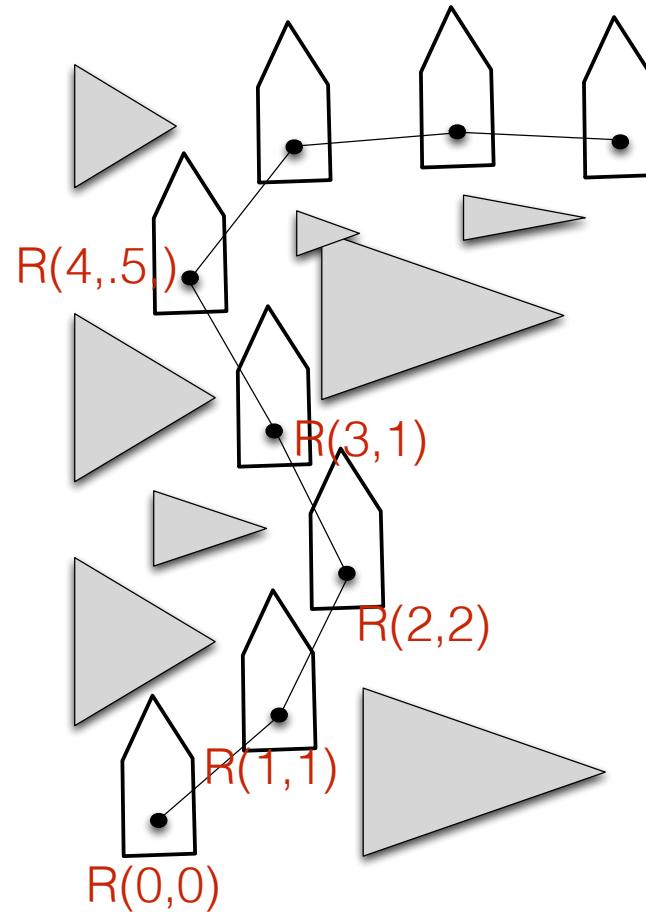
Physical Space and C-space

physical space	robot	C-space
2D	polygon, translation only $R(x, y)$	2D
2D	polygon, translation + rotation $R(x, y, \theta)$	3D
3D	polygon, translation + rotation $R(x, y, z, \theta_x, \theta_y, \theta_z)$	6D
3D	robot with arms and joints	many dof

Path planning in C-space

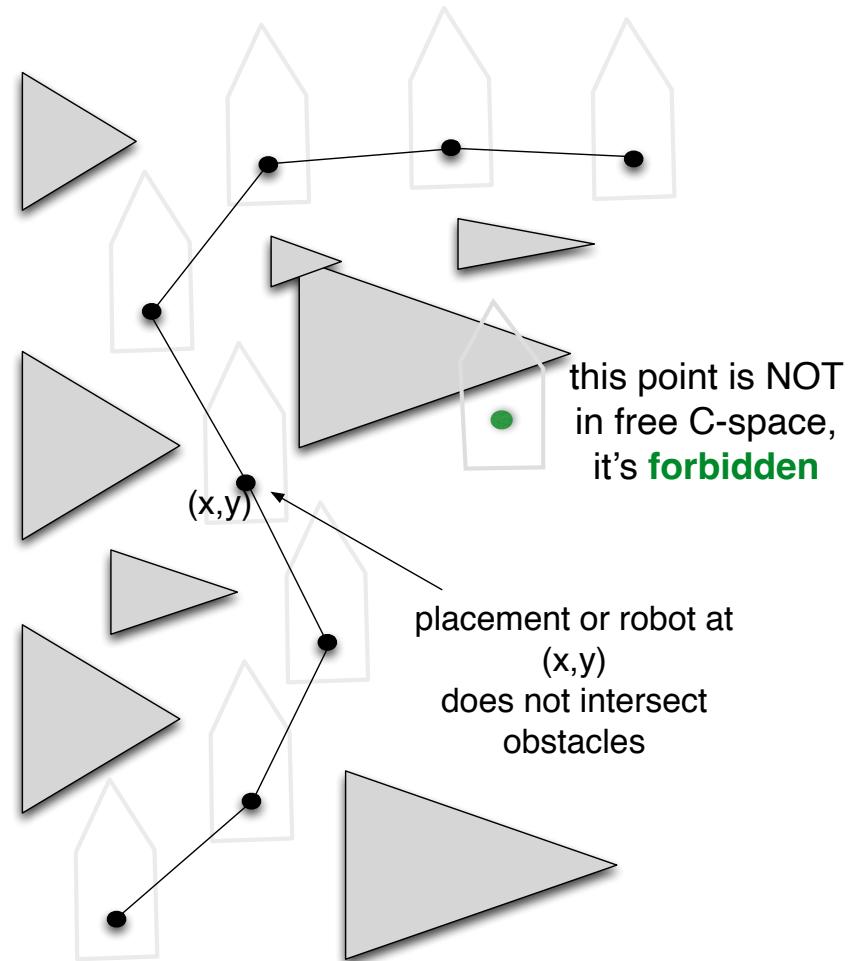
- The robot moves in physical space. Any path for robot in physical space corresponds to a set of placements in C-space ==> a path in C-space
- Path in physical space <==> path in C-space

Path planning is done in C-space
because it captures the dof of the robot



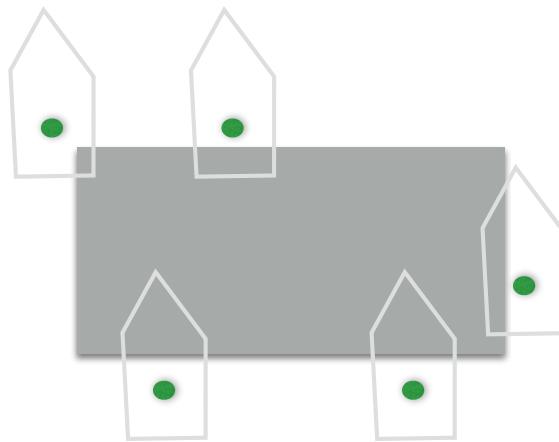
Free and forbidden points in C-space

- A configuration (x, y, \dots) in C-space is **free** if placing $R(x, y, \dots)$ does not intersect any obstacle, and **forbidden** otherwise
- In general if we have a k -dimensional C-space: a configuration (x_1, x_2, \dots, x_k) is **free** if placing $R(x_1, x_2, \dots, x_k)$ does not intersect any obstacle, and **forbidden** otherwise



Physical Obstacles ==> “Extended” C-obstacles

Not every placement $R(x, y)$ “outside” the obstacle is free of collisions.

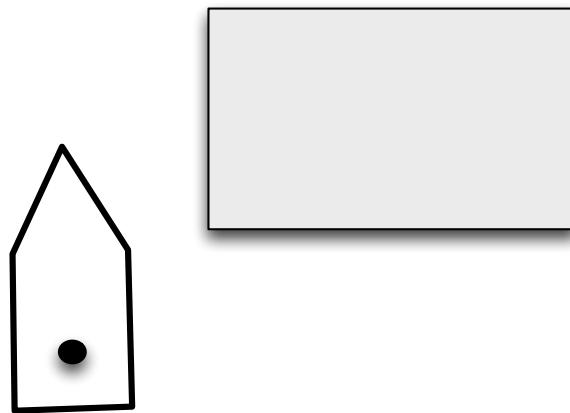
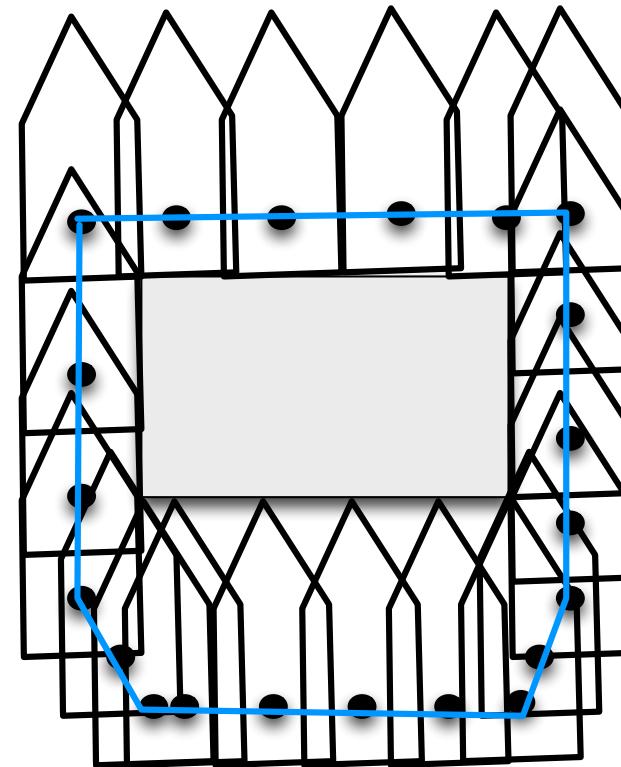


Extended obstacle in C-space:

the set of placements (x, y) so that $R(x, y)$ intersects that obstacle

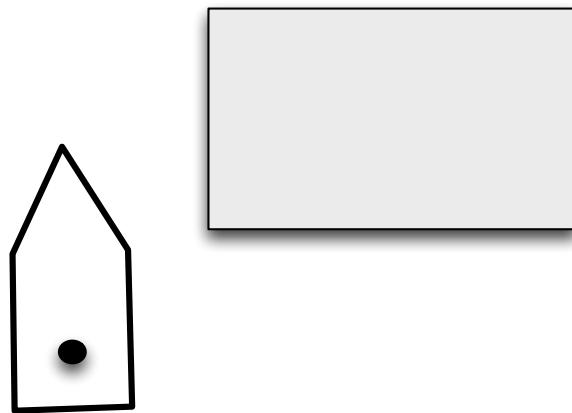
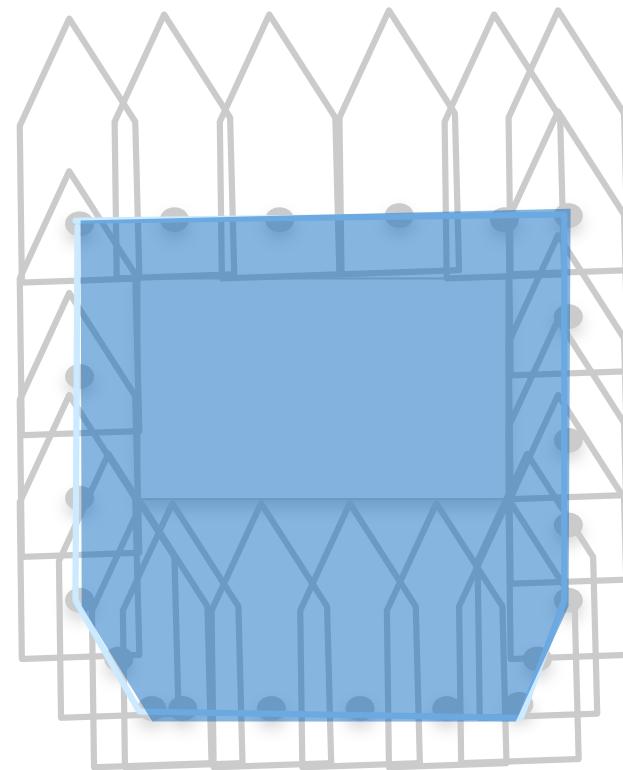
Extended obstacles or C-obstacles

- Given obstacle O and robot R
 - C-obstacle = the placements of R that cause intersection with O



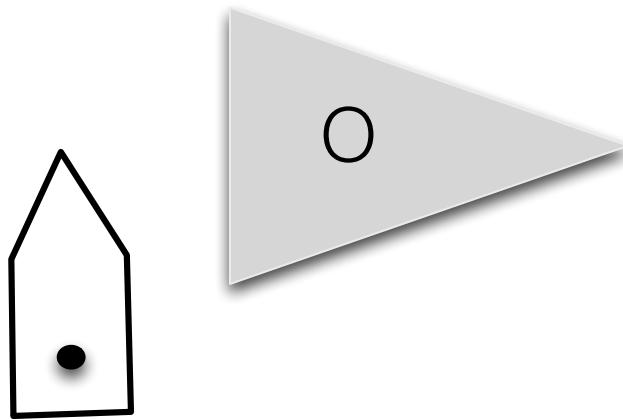
Extended obstacles or C-obstacles

- Given obstacle O and robot R
 - C-obstacle = the placements of R that cause intersection with O



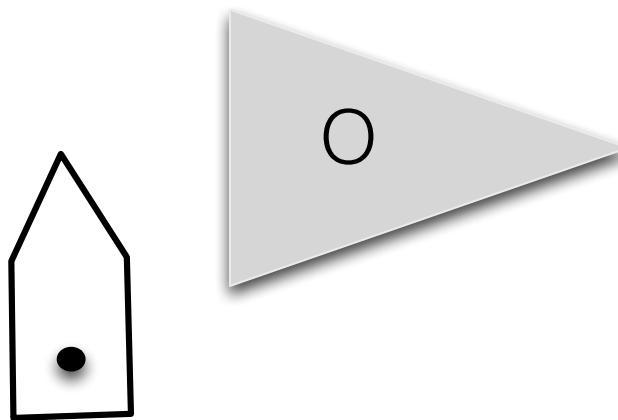
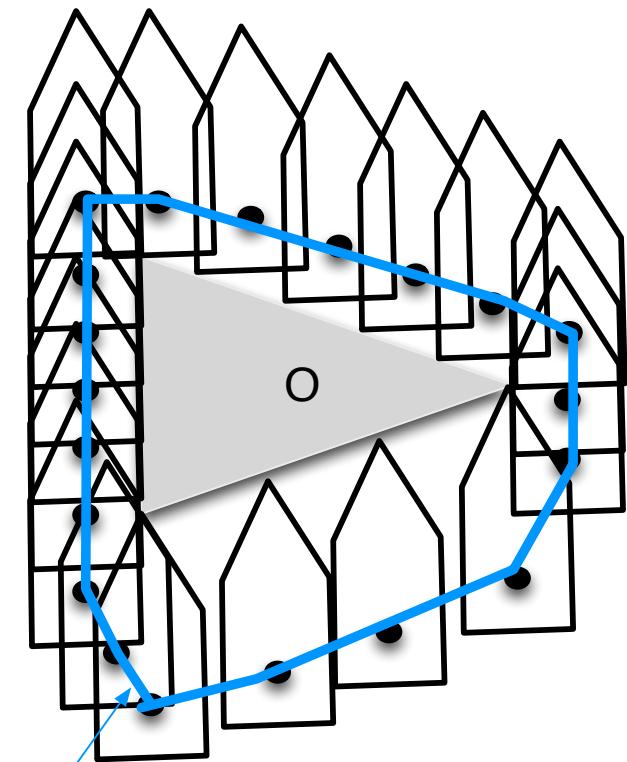
Extended obstacles or C-obstacles

- Given obstacle O and robot R
 - C-obstacle = the placements of R that cause intersection with O



Extended obstacles or C-obstacles

- Given obstacle O and robot R
 - C-obstacle = the placements of R that cause intersection with O

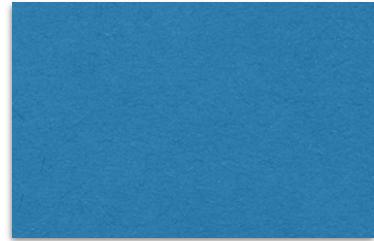
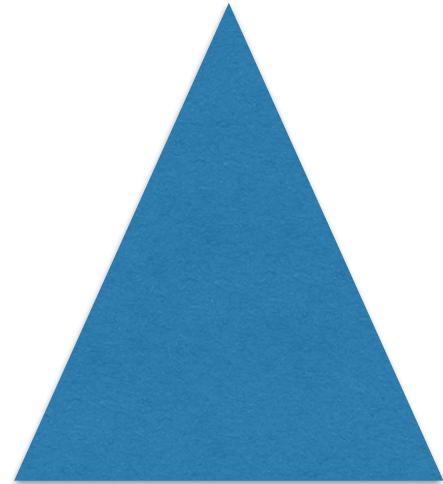


C-obstacle corresponding to O

Class work

Find the corresponding C-obstacles

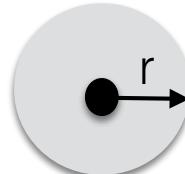
robot R



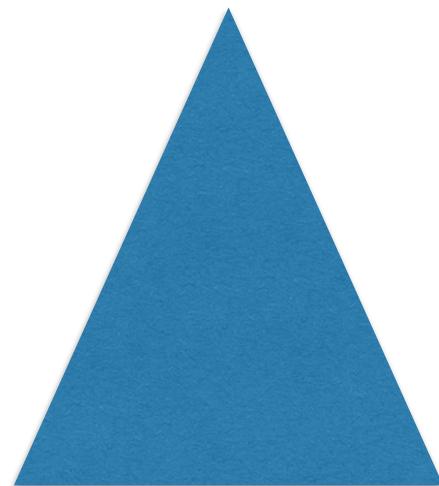
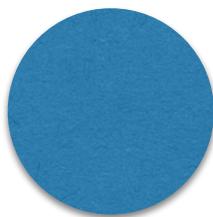
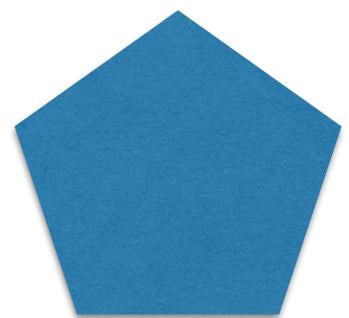
- Draw a small set of obstacles such that their C-obstacles overlap.
- Draw a scene of obstacles such that free physical space is not disconnected, but the free C-space is disconnected.

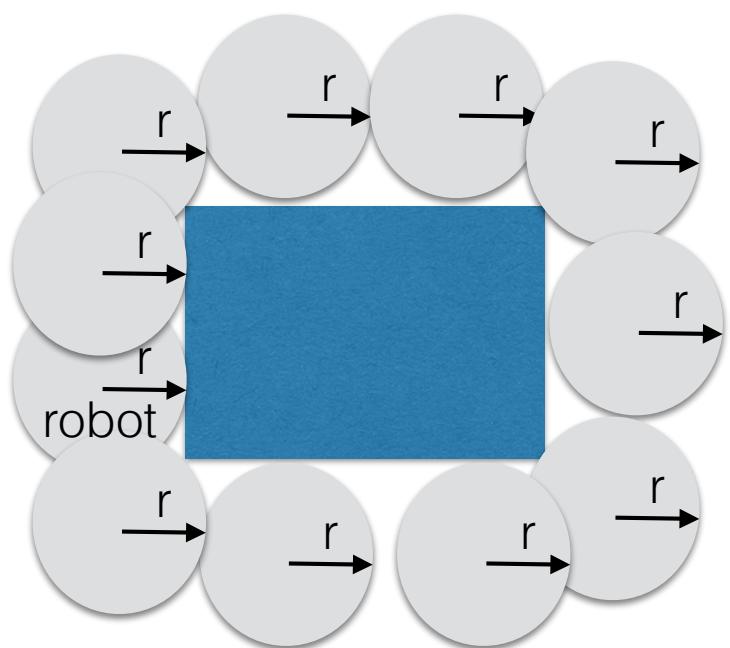
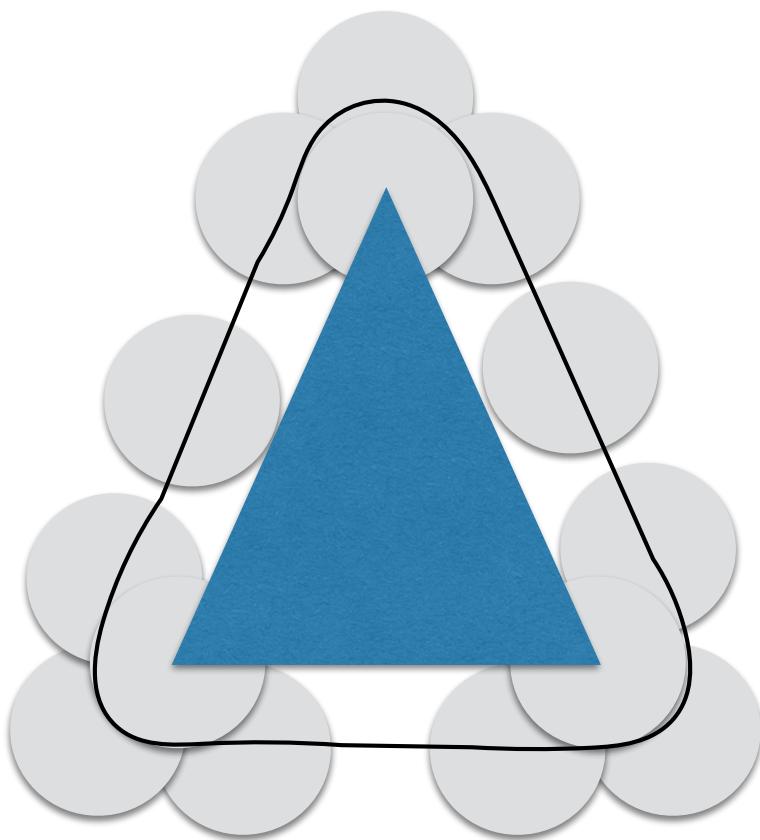
Class work

Find the corresponding C-obstacles



robot

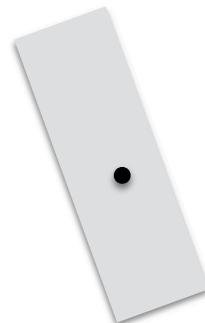




Class work

Find the corresponding C-obstacles

translation only

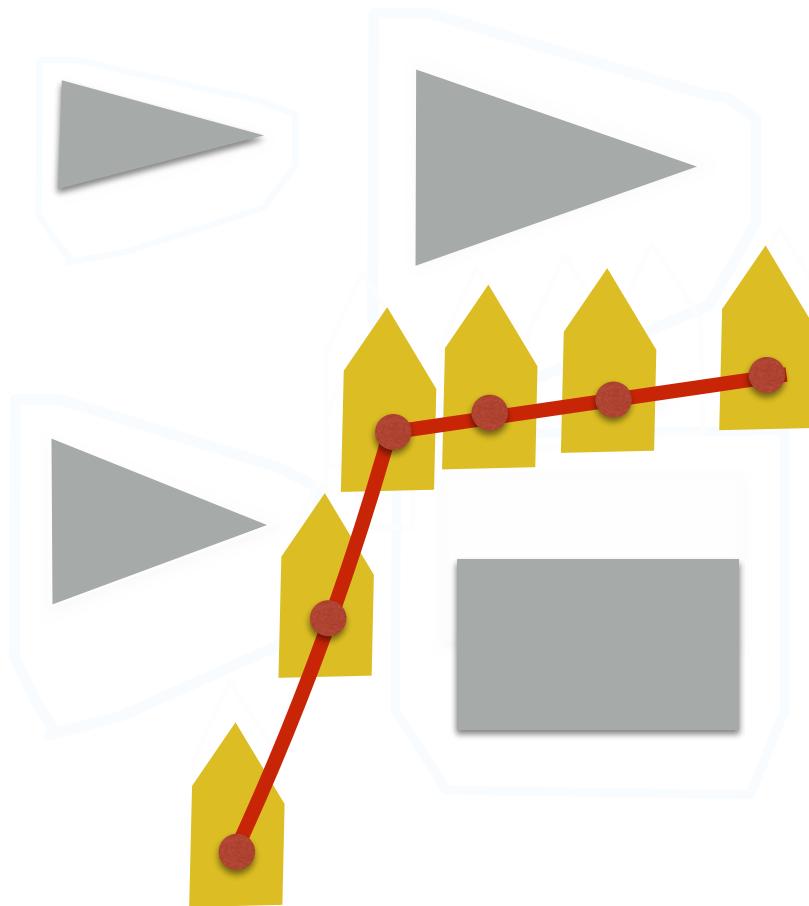


robot

Polygonal robot translating in 2D

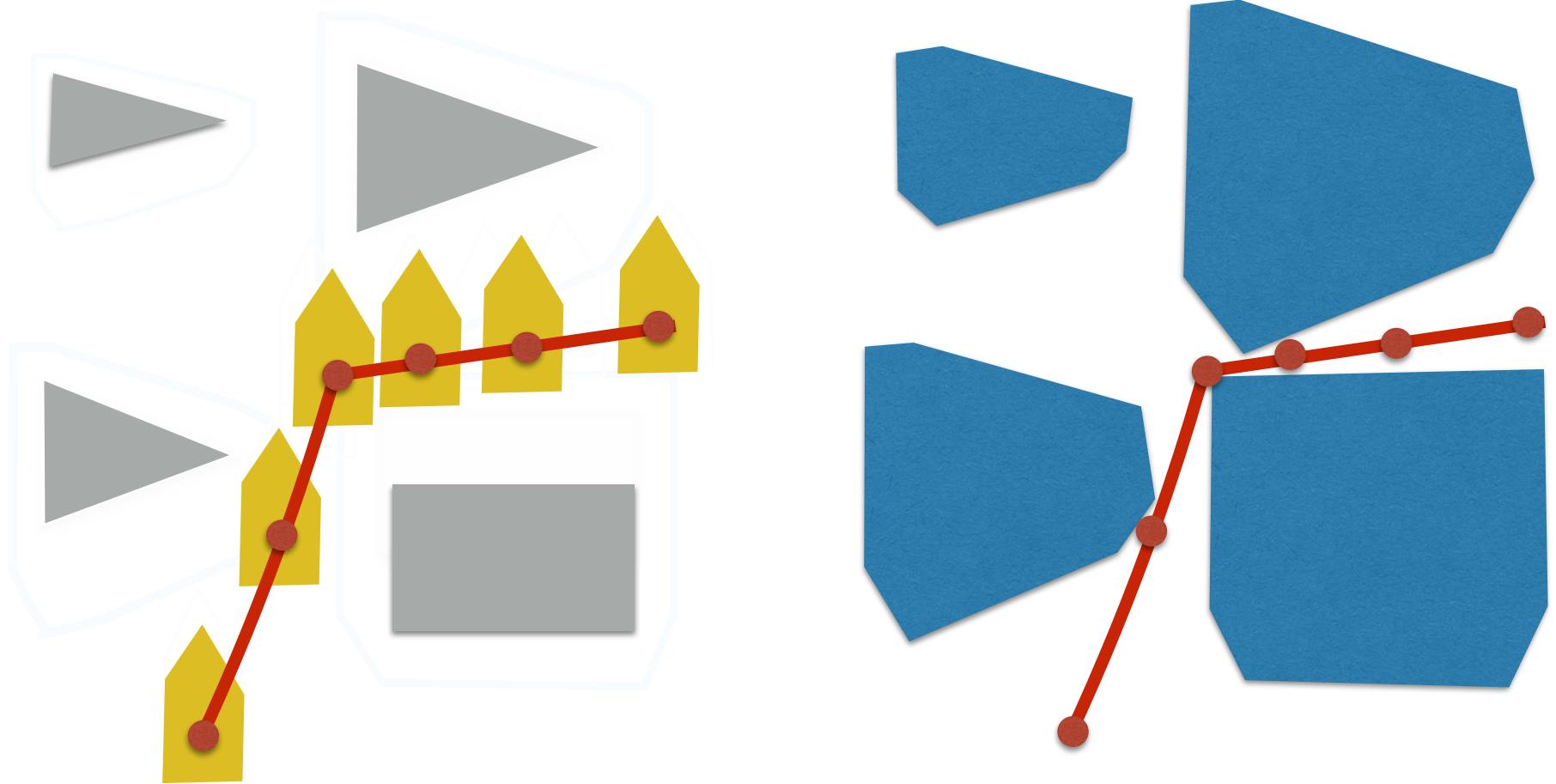
We want a collision free path for the robot from *start* to *end*

Any placement $R(x, y)$ along the path is in free C-space and thus outside the C-obstacles



Polygonal robot translating in 2D

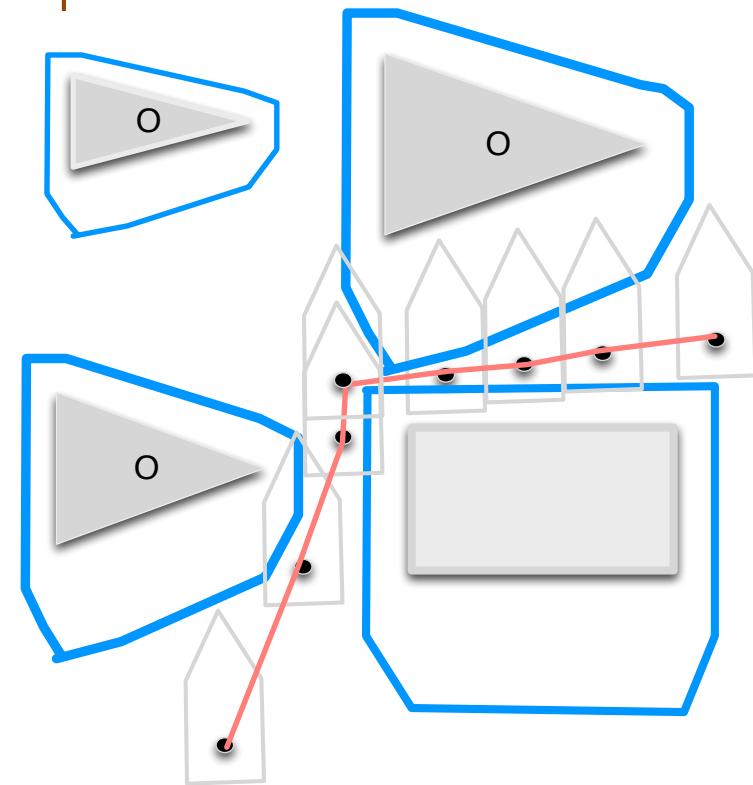
polygonal robot R among obstacles **point** robot among C-obstacles



Polygonal robot translating in 2D

Algorithm (list of obstacles, robot R)

- For each obstacle O , compute the corresponding C-obstacle
- Compute the union of C-obstacles, then compute its complement. That's the free C-space
 - //planning for R reduces to planning for point-robot moving in free C-space
- Compute a roadmap of free C-space
 - a trapezoidal decomposition graph + BFS
 - or, a visibility graph + Dijkstra

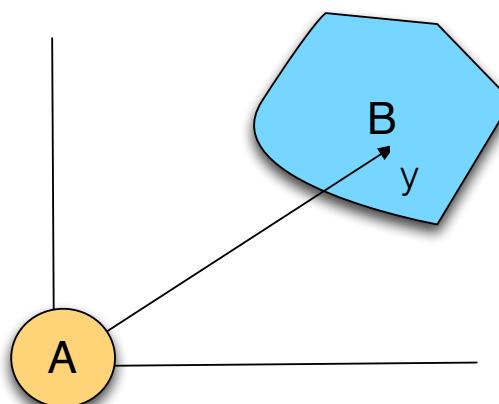
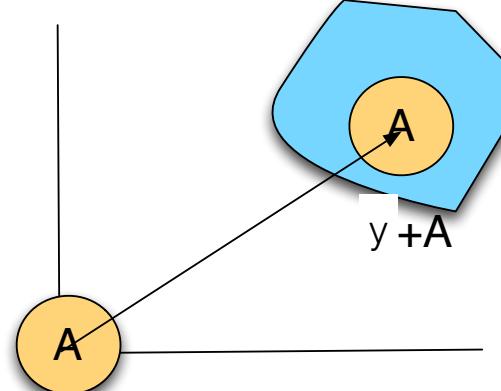


How to compute C-obstacles?

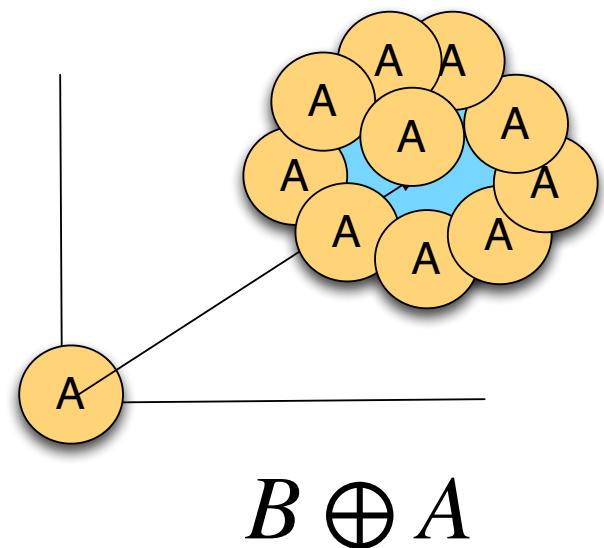
Minkowski sum

- Let A, B two sets of points in the plane
 - $A \oplus B = \{x + y \mid x \in A, y \in B\}$ ← Minkowski sum

- Interpretation: consider set A to be centered at the origin. Then $B \oplus A$ represents many copies of A , translated by y , for all $y \in B$; i.e. place a copy of A centered at each point of B .

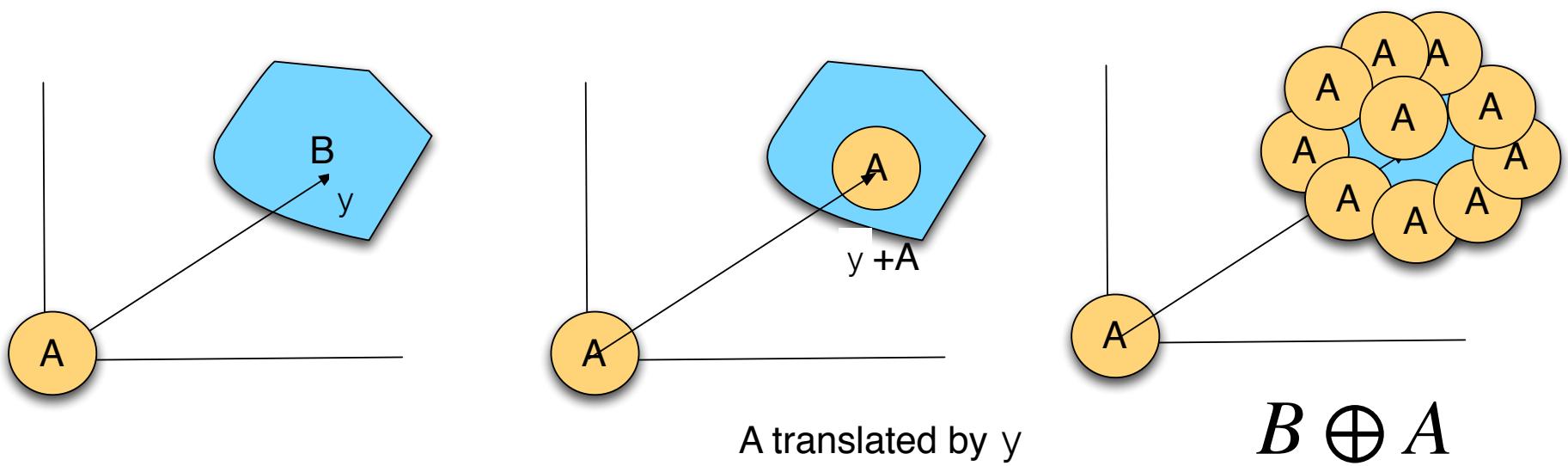


A translated by y



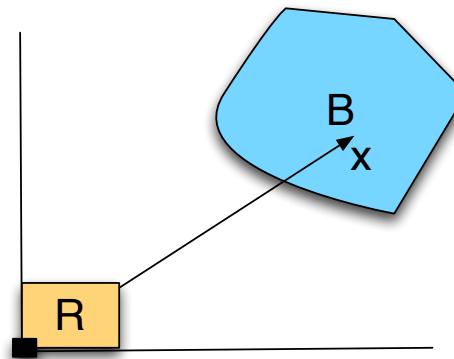
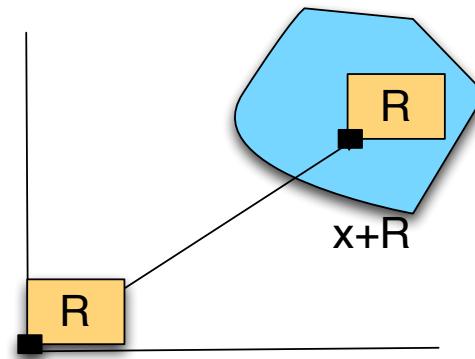
Minkowski sum

- What is the boundary of $B \oplus A$?
 - Slide A so that the center of A traces the boundary of B

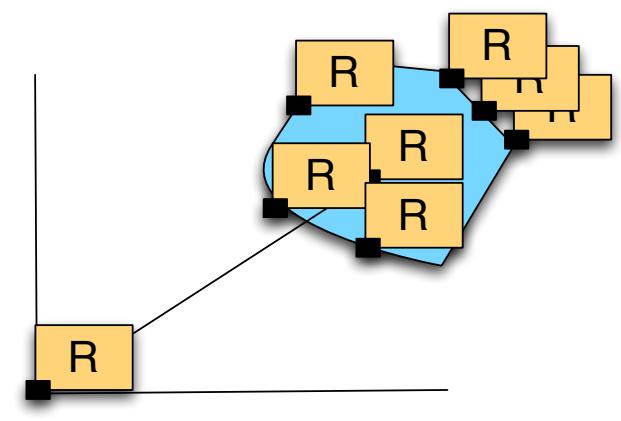


C-obstacles as Minkowski sums

- Consider a robot R with the reference in the lower left corner



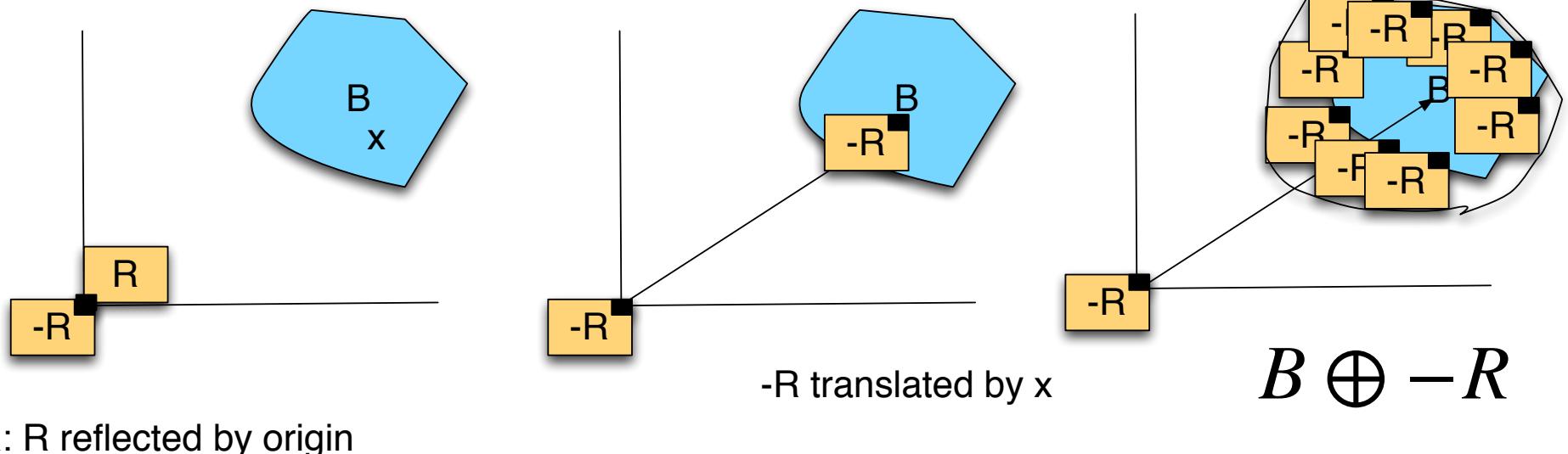
$x+R$
R translated by x



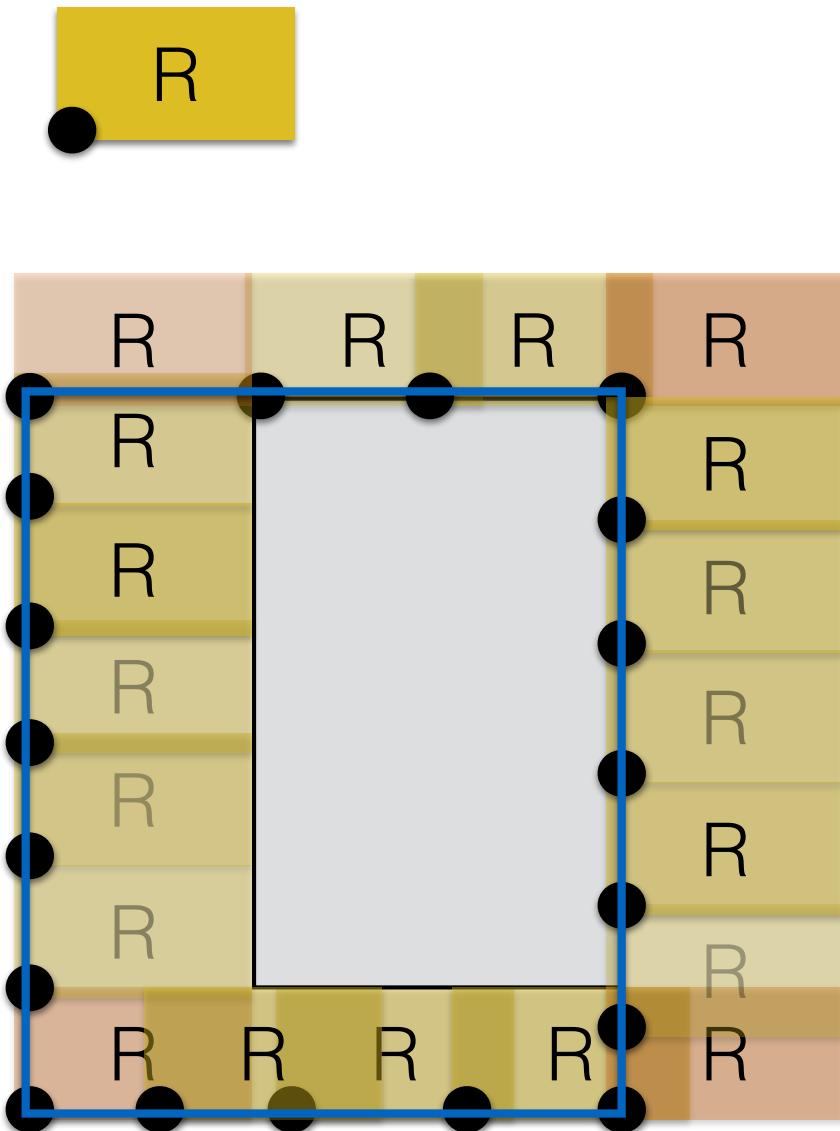
$$B \oplus R$$

$B \oplus R$ is not quite the C-obstacle of B

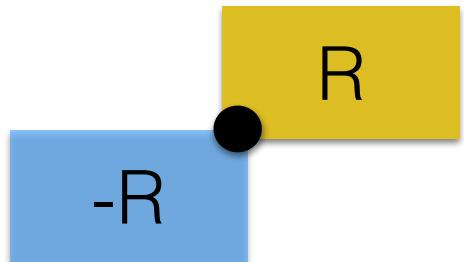
C-obstacles as Minkowski sums



The C-obstacle of B is $B \oplus -R(0,0)$

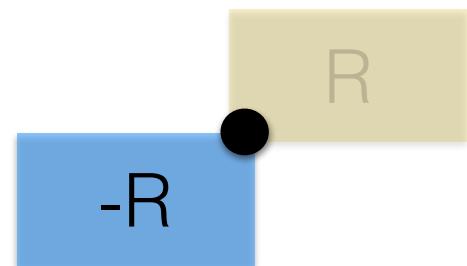
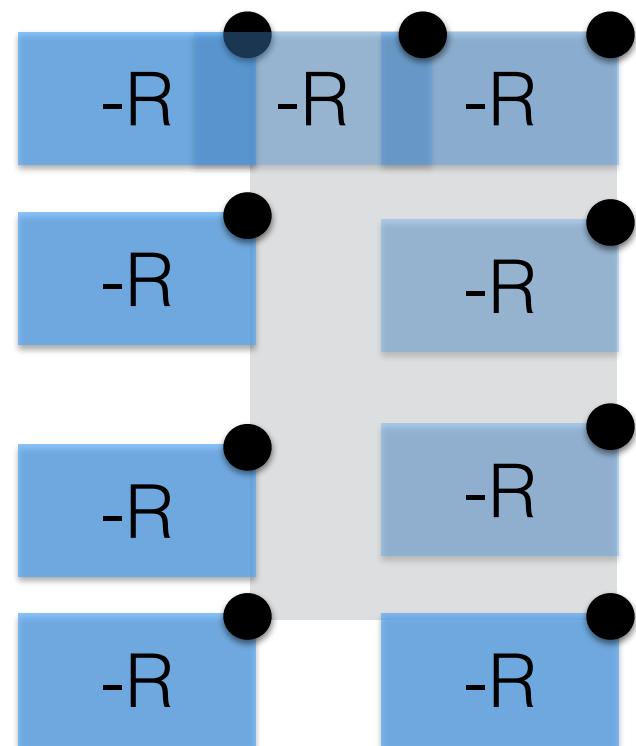


extended obstacle

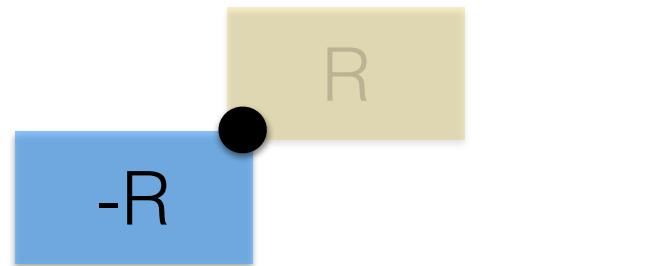
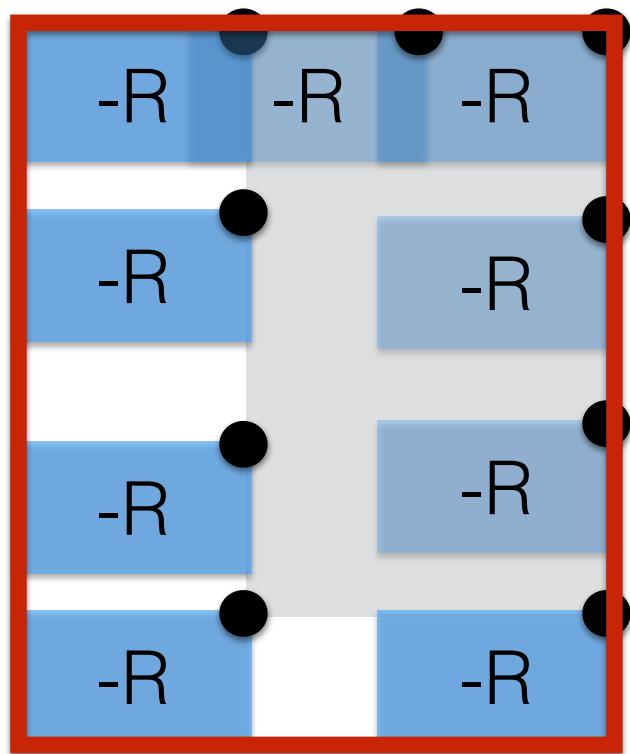


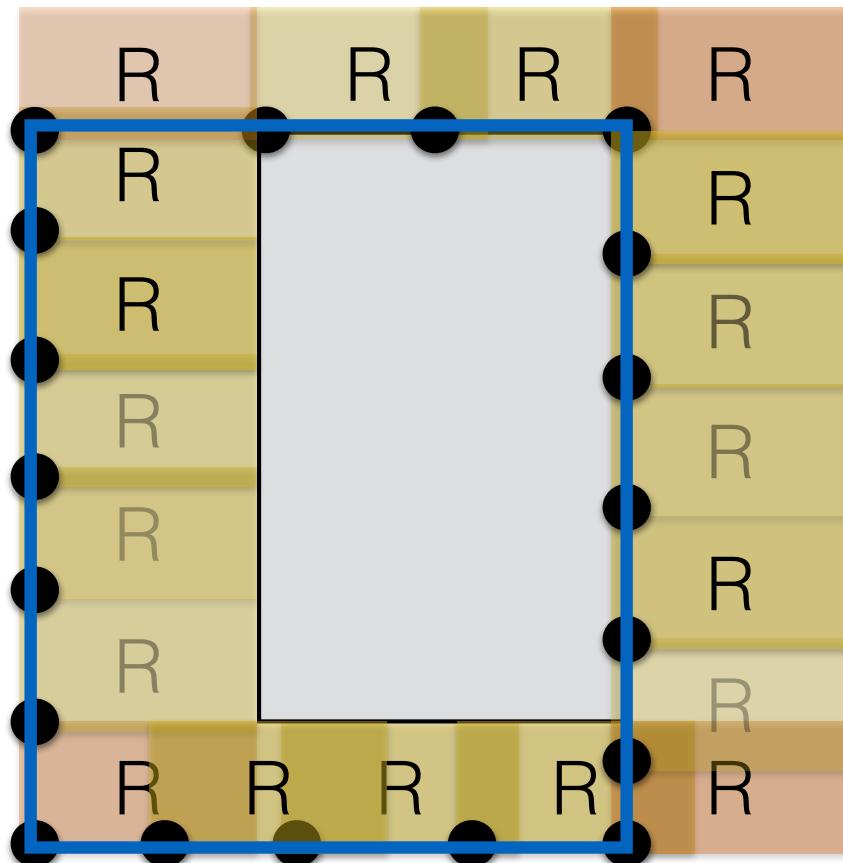
R

-R

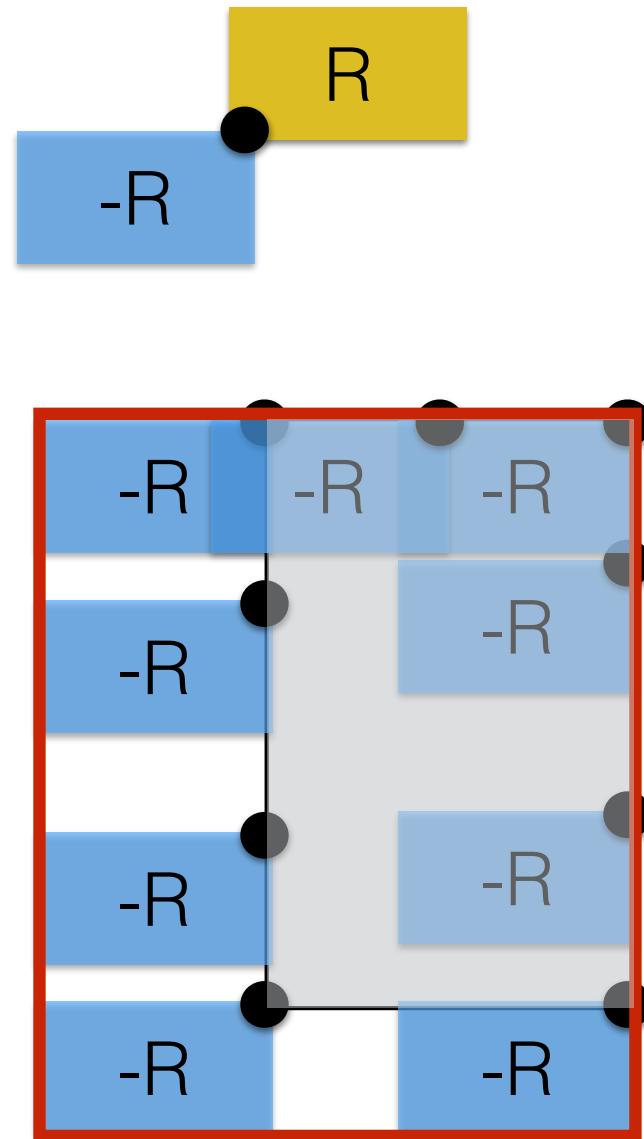


$$O \oplus -R(0,0)$$

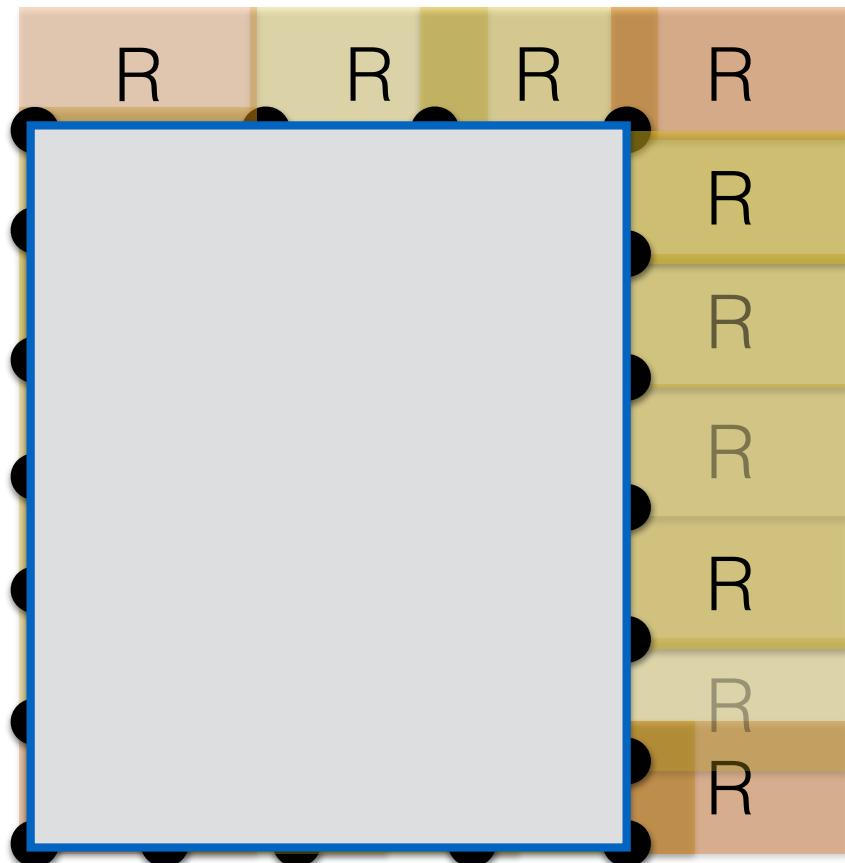




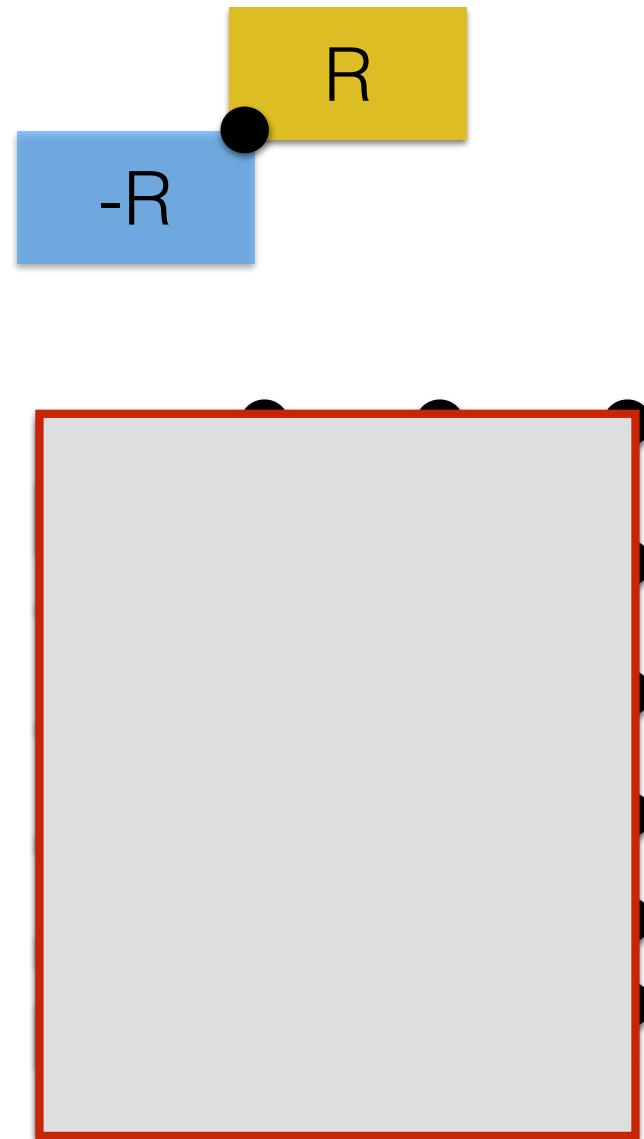
extended obstacle



$$O \oplus -R(0,0)$$

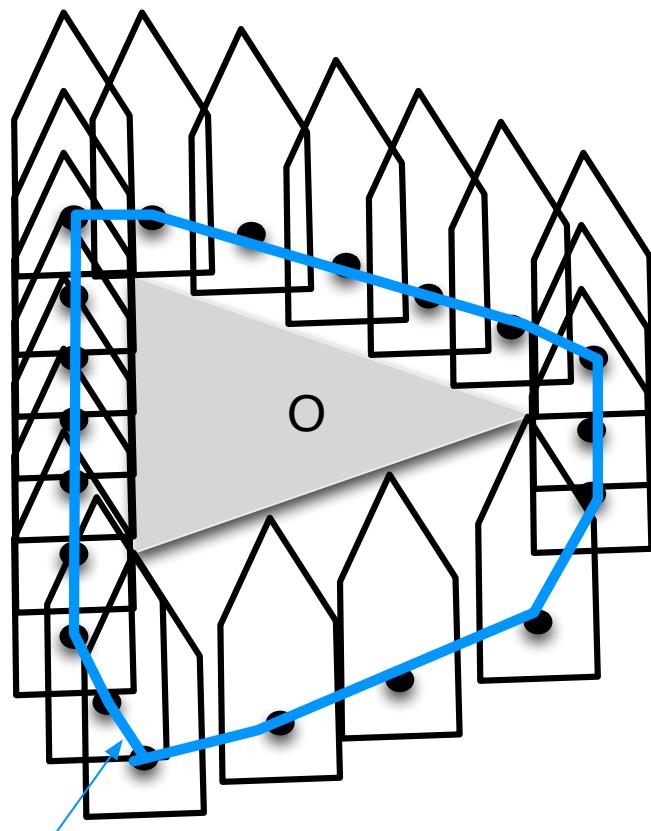


extended obstacle



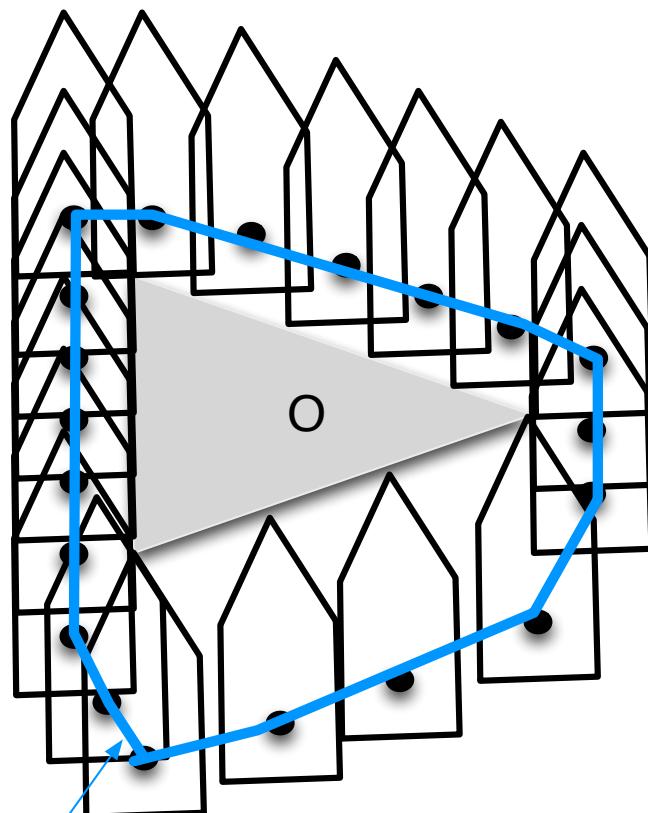
$$O \oplus -R(0,0)$$

Slide so that R touches the obstacle



C-obstacle corresponding to O

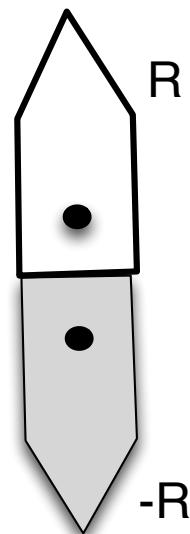
Slide so that R touches the obstacle



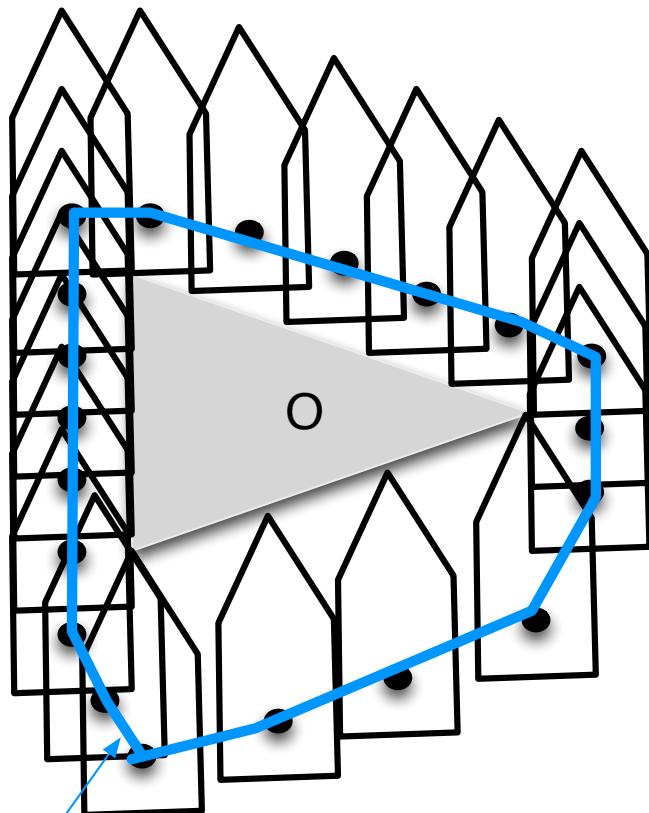
C-obstacle corresponding to O

Slide so that centerpoint of $-R$ traces the edges of obstacle

Find $O + (-R)$

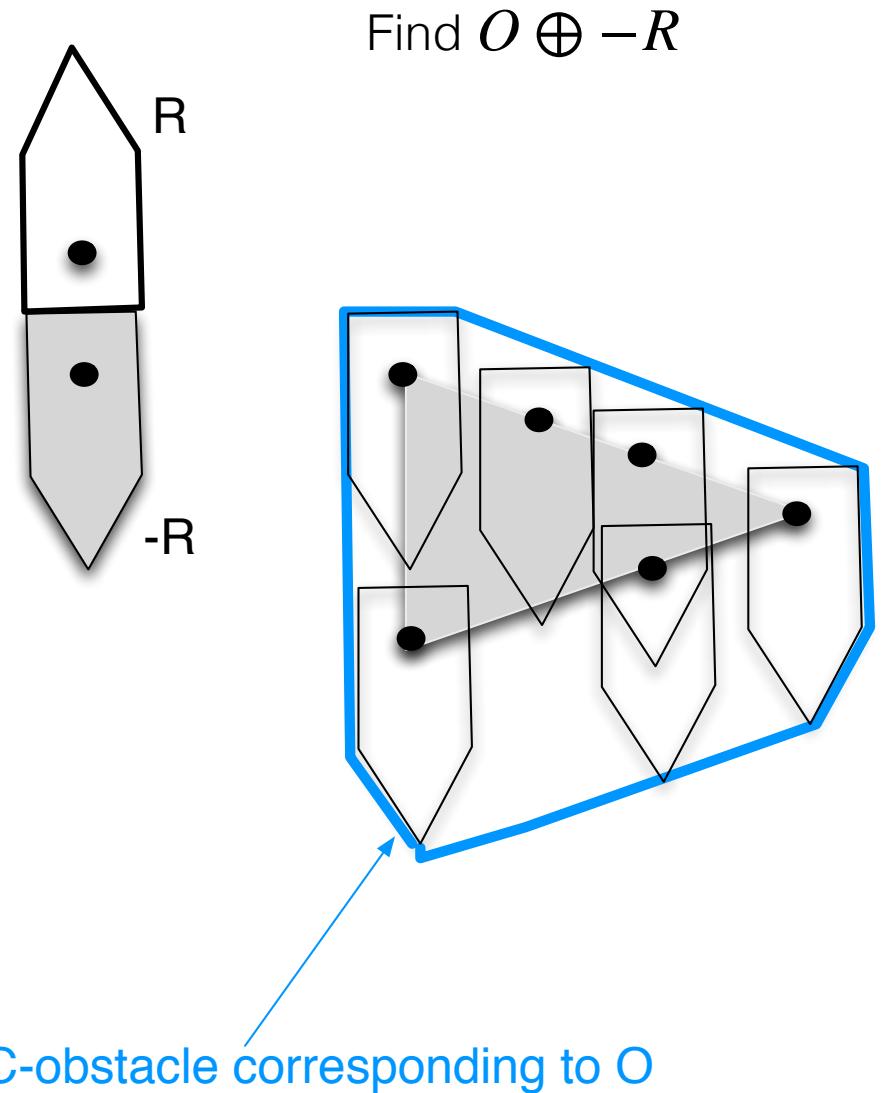


Slide so that R touches the obstacle

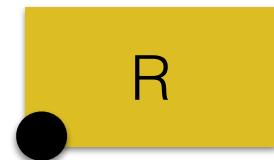
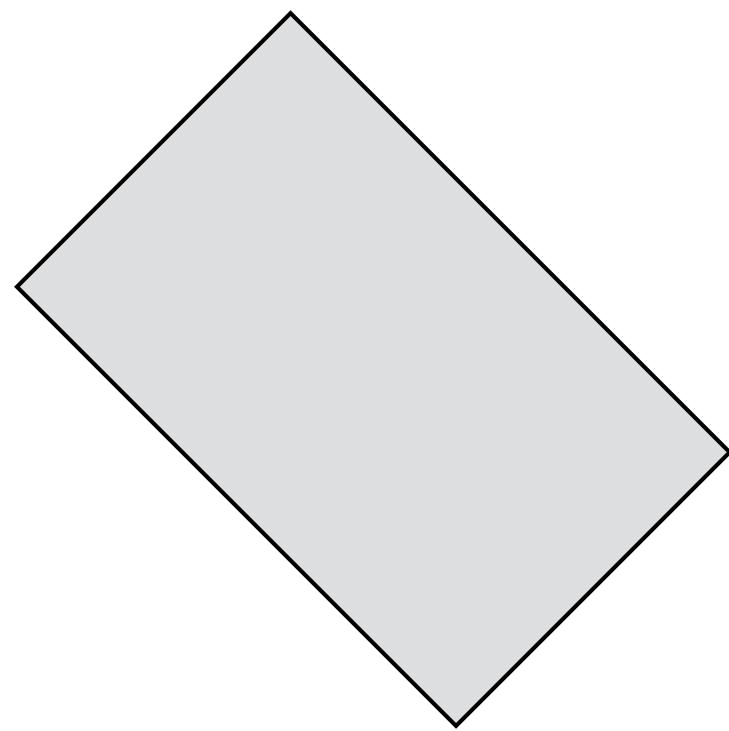


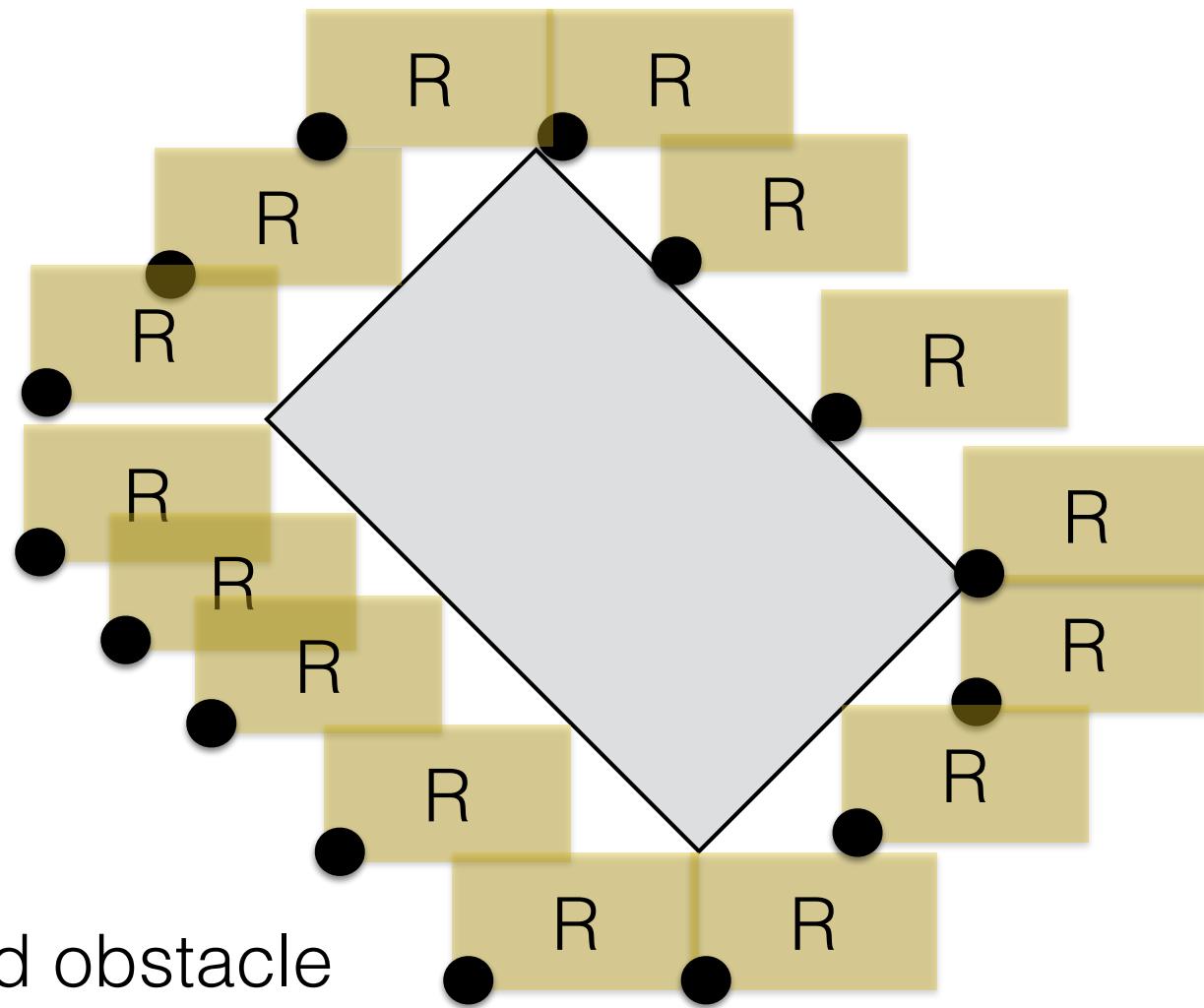
C-obstacle corresponding to O

Slide so that centerpoint of $-R$ traces the edges of obstacle

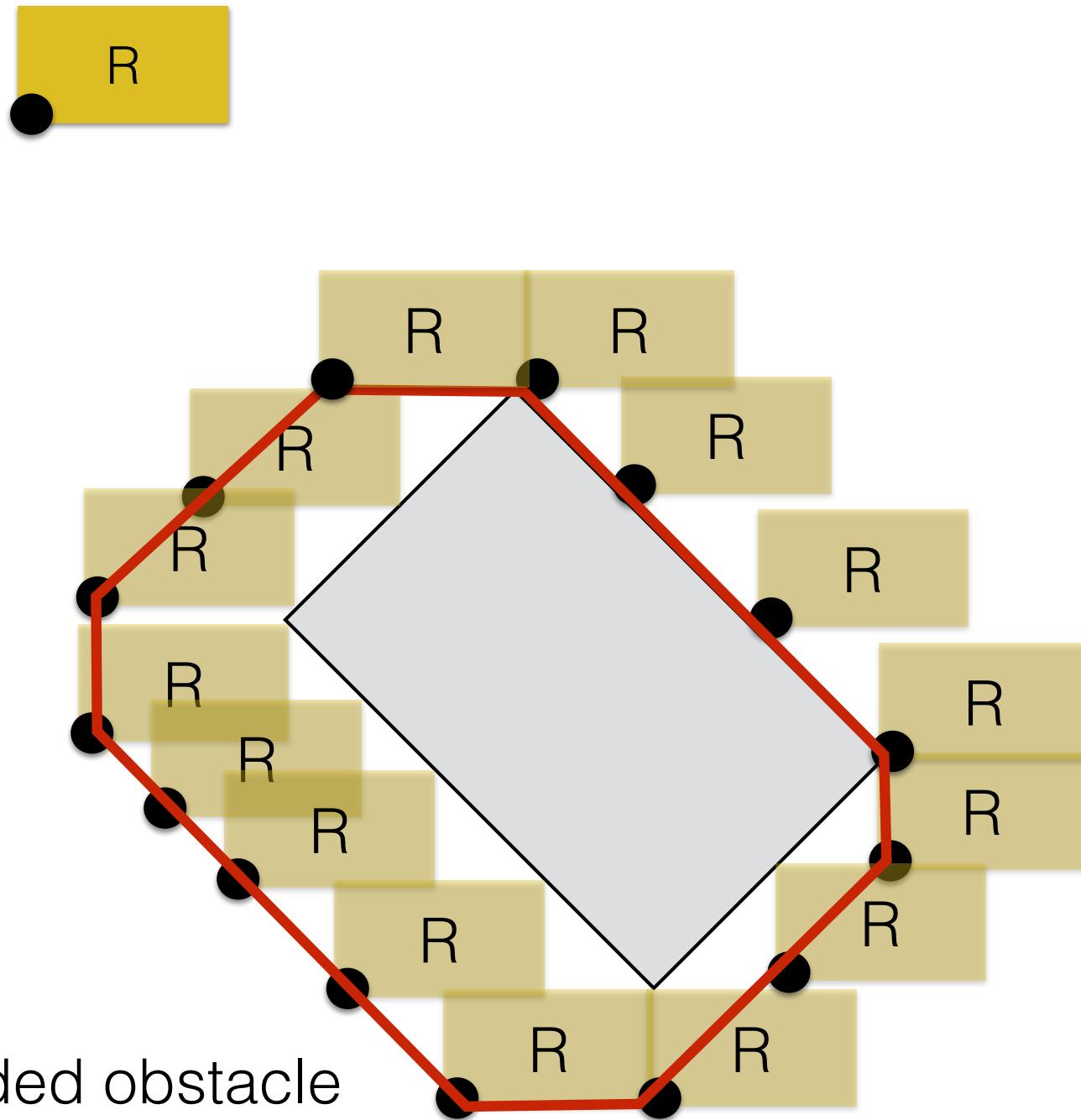


Find $O \oplus -R$

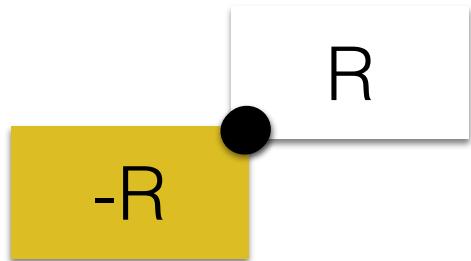
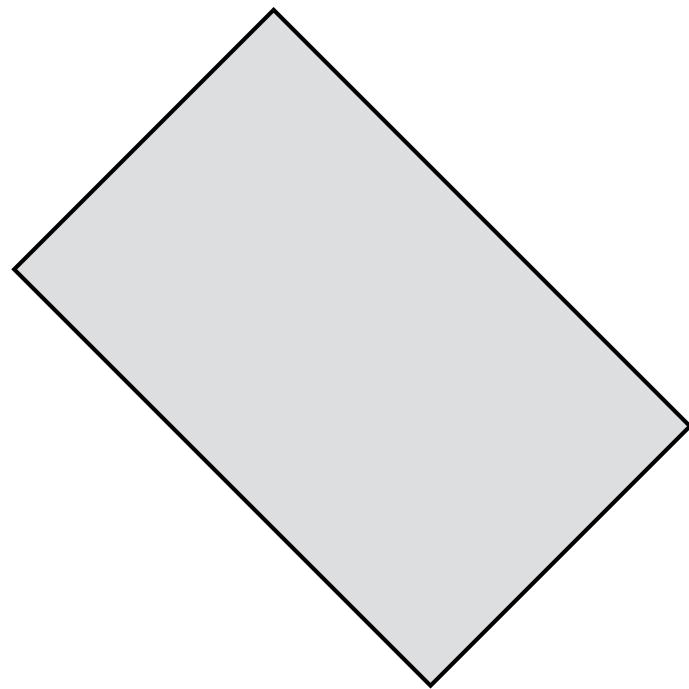


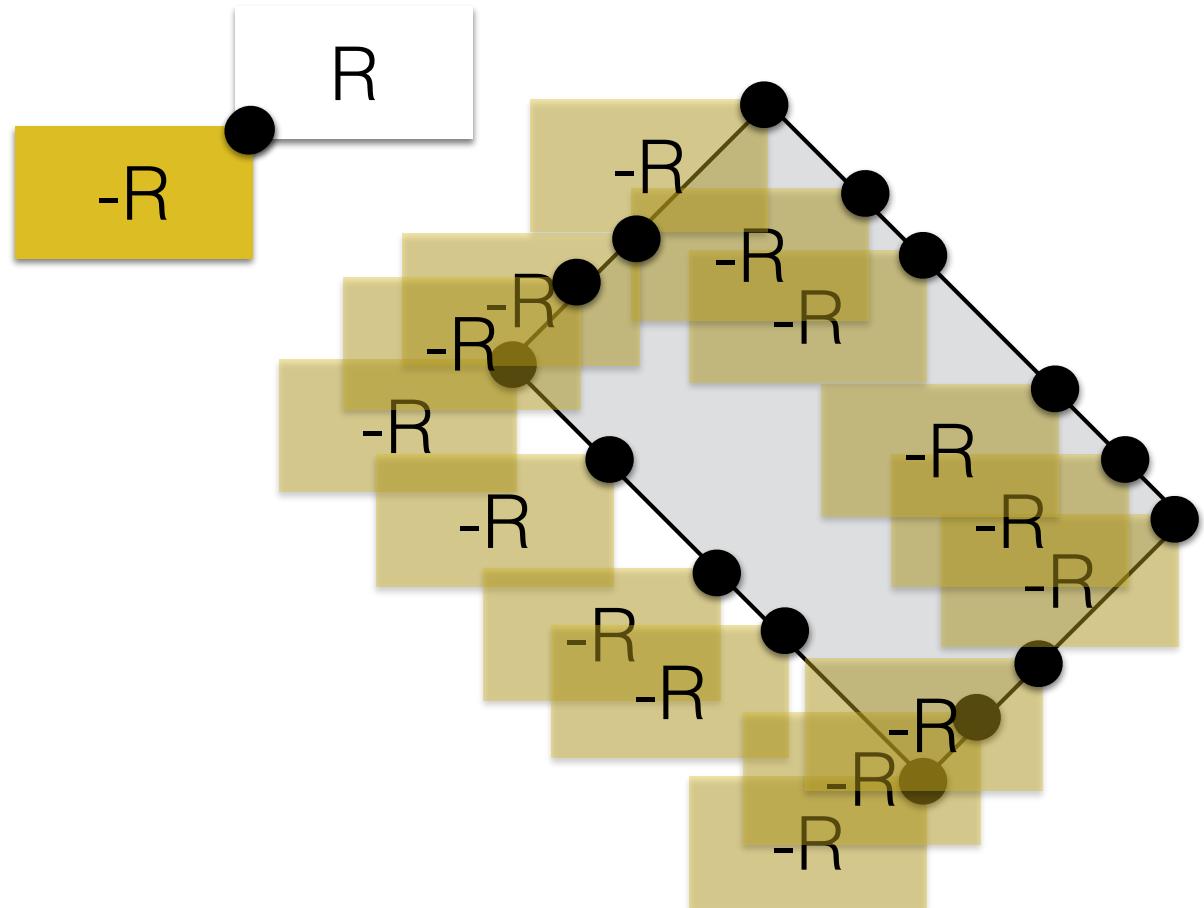


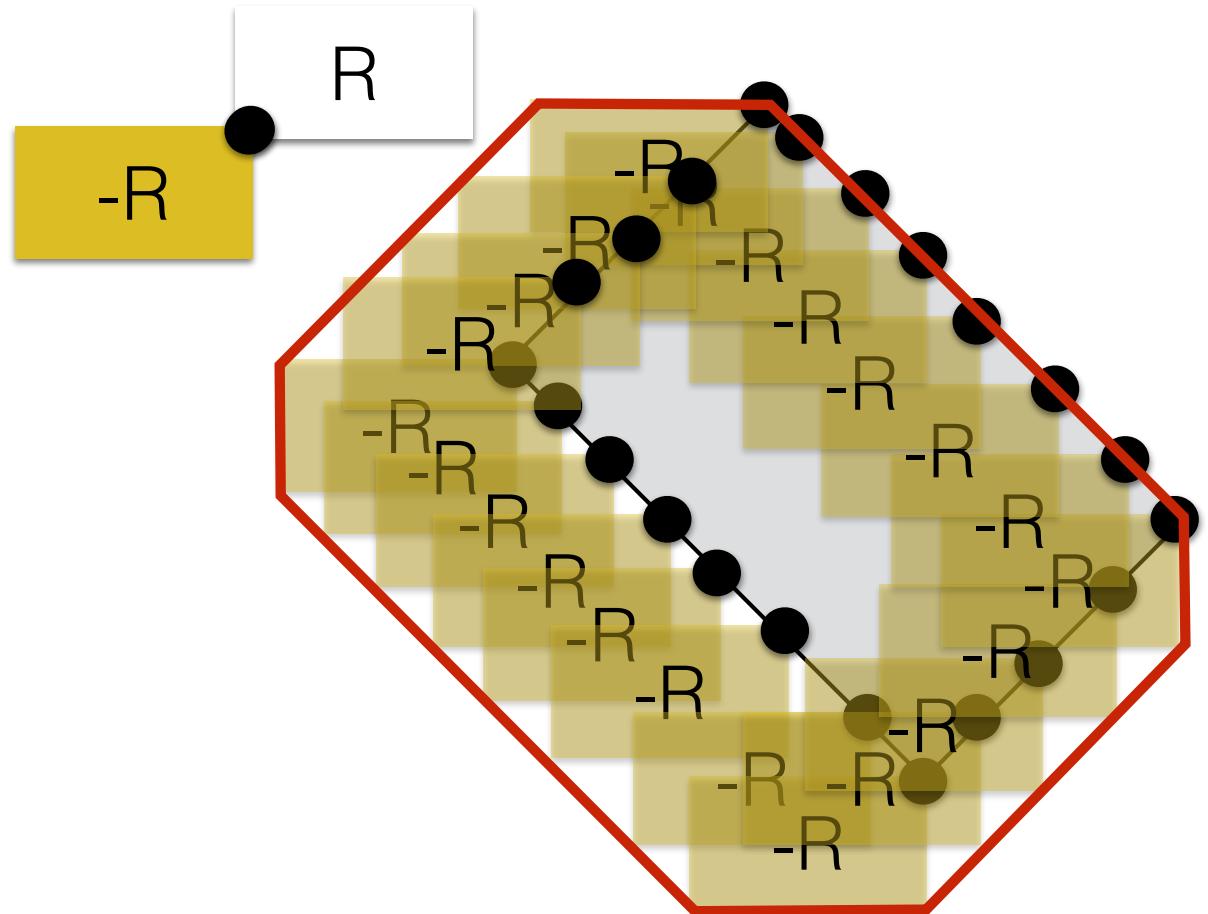
extended obstacle



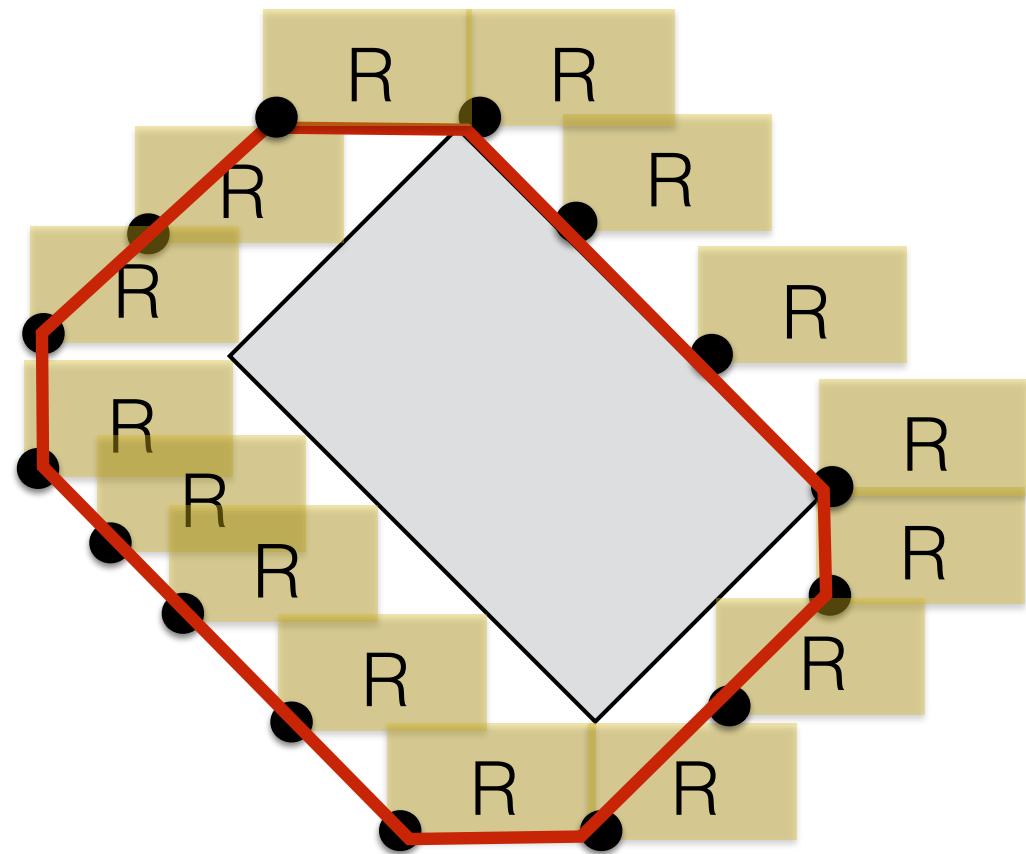
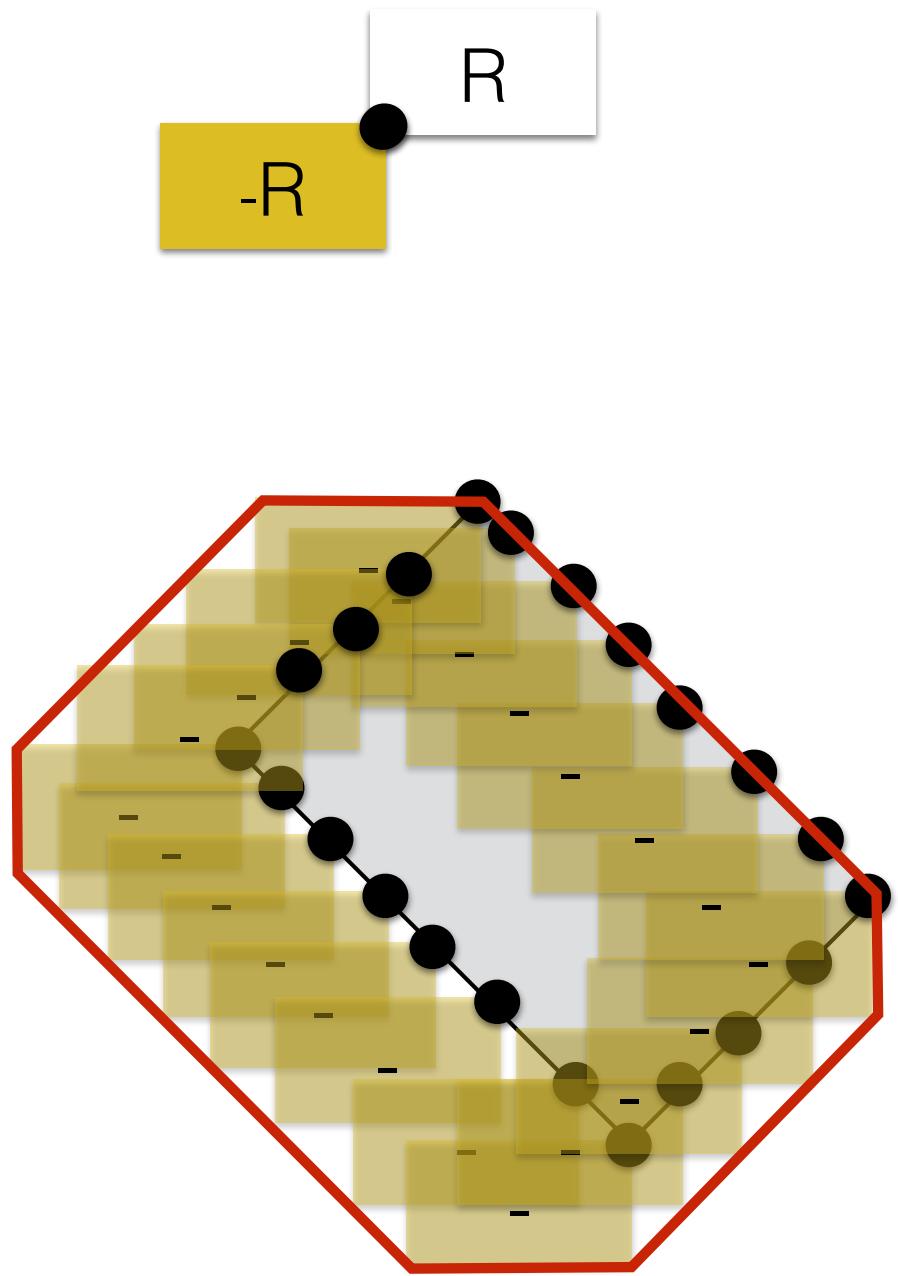
extended obstacle





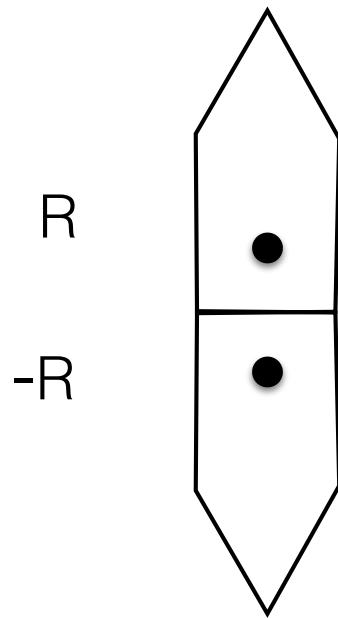
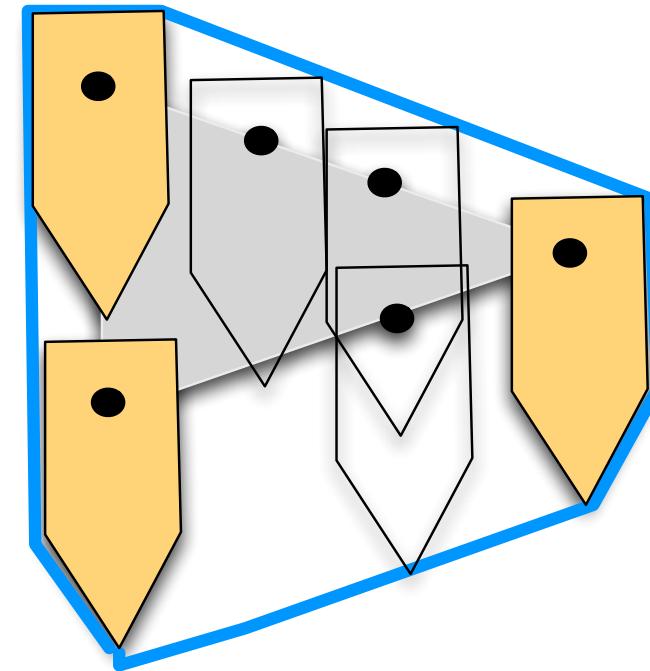


Same!



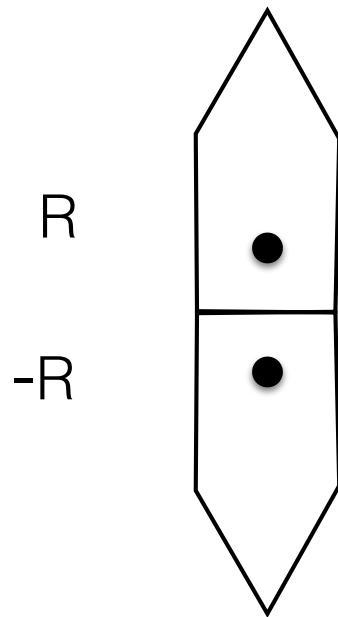
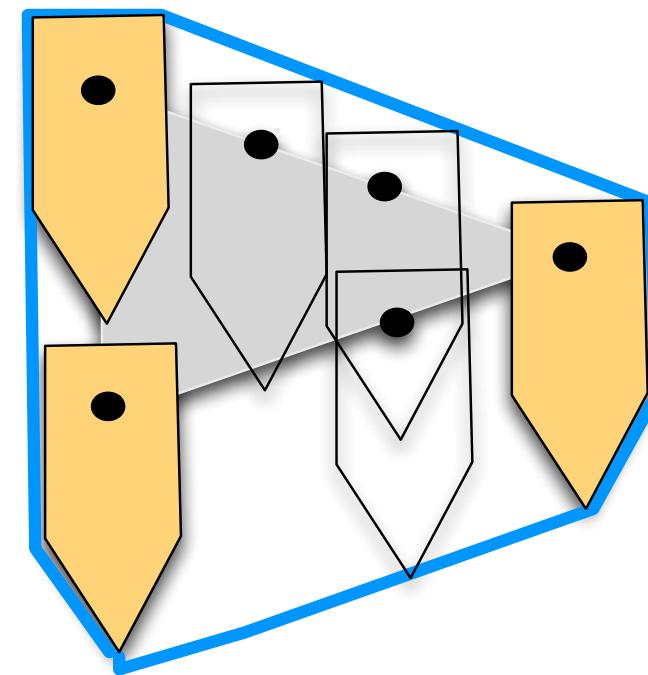
Recap

- We want to compute extended obstacles
- We expressed extended obstacles as Minkowski sum
- How do we compute Minkowski sums?



Convex robot with convex polygon

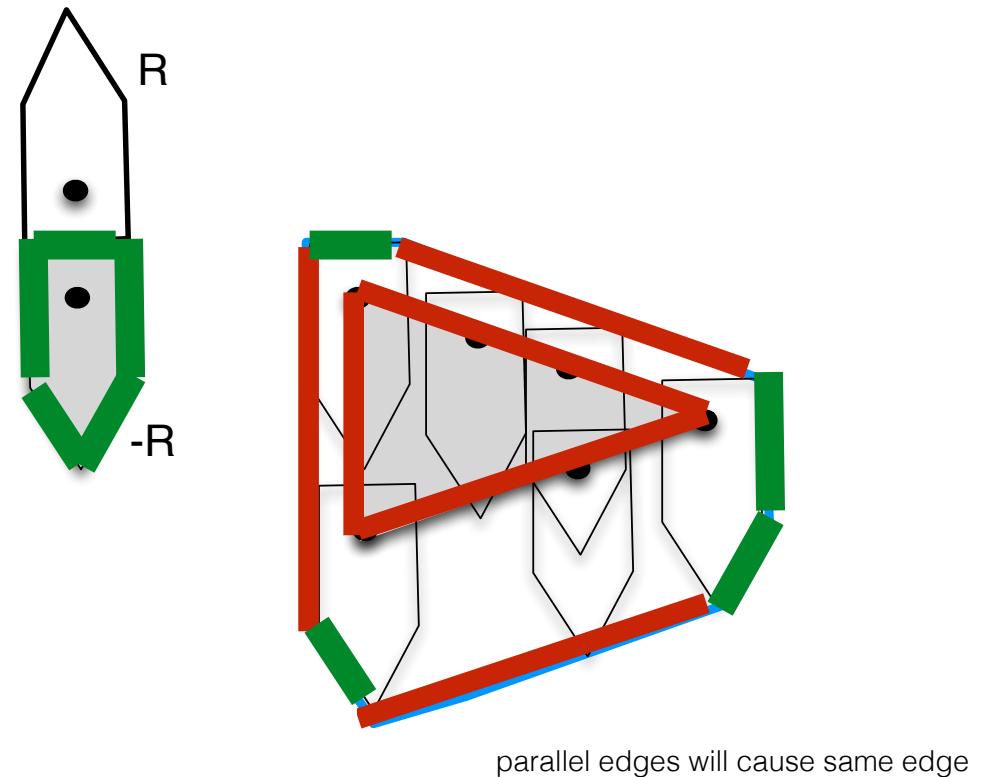
- To compute: Place $-R$ at all vertices of O and **compute convex hull**



Convex robot with convex polygon

- Even better, it is possible to compute in $O(m + n)$ time by walking along the boundaries of R and O

- Each edge in R, O will cause an edge in $O \oplus -R$
- $O \oplus -R$ has $O(m+n)$ edges



Computing extended obstacles: What's known

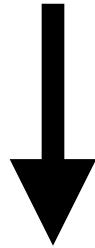
2D

- **convex + convex polygons**
 - The Minkowski sum of two convex polygons with n , and m edges respectively, is a convex polygon with $n + m$ edges and can be computed in $O(m + n)$ time.
- **convex + non-convex polygons**
 - Triangulate and compute Minkowski sums for each pair [convex polygon, triangle], and take their union
 - Size of Minkowski sum: $O(m + 3)$ for each triangle $\Rightarrow O(m \cdot n)$
- **non-convex + non-convex polygons**
 - Size of Minkowski sum: $O(n^2 \cdot m^2)$

3D

- it gets worse . . .

So far we've considered only translation



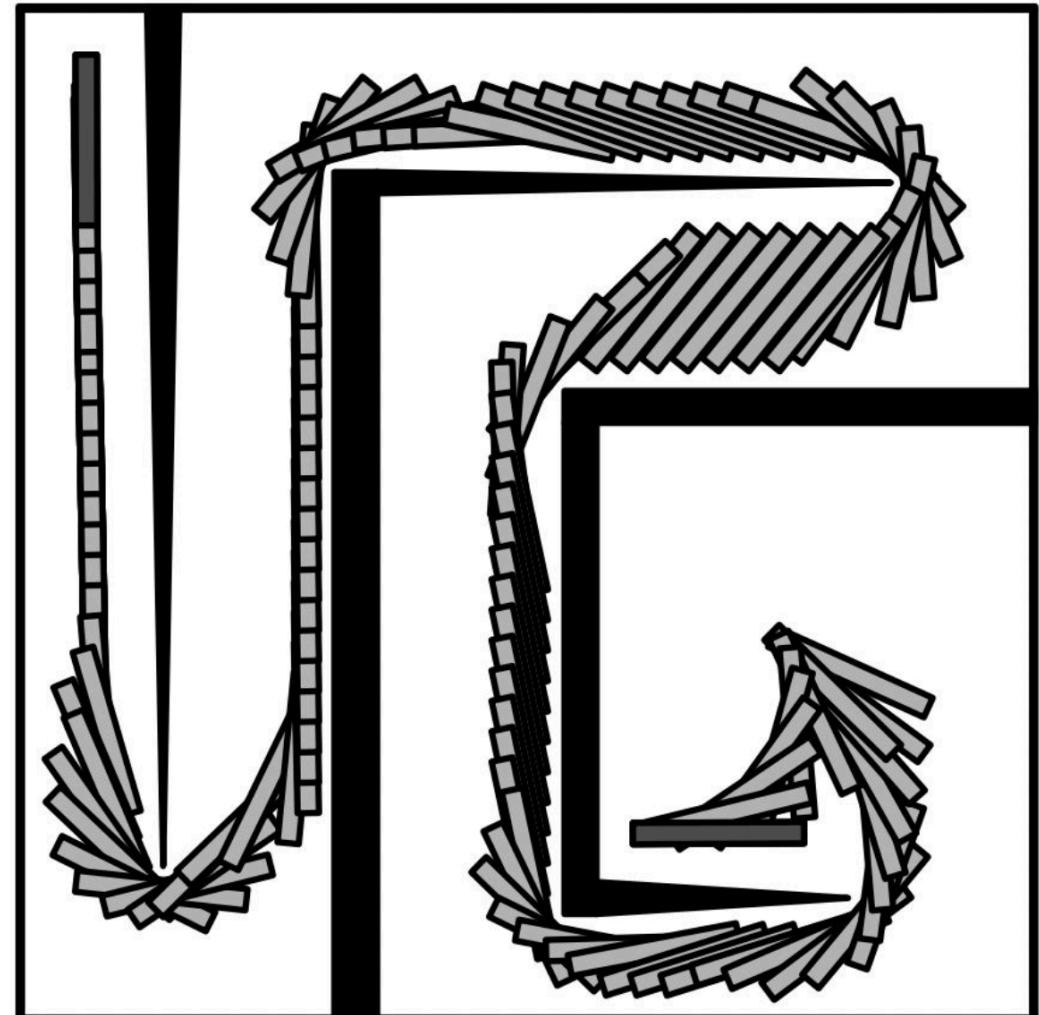
Next: Translation + Rotation

Polygonal robot in 2D with rotations

- Physical space is 2D
- A placement is specified by 3 parameters: $R(x, y, \theta)$ ==> C-space is 3D.

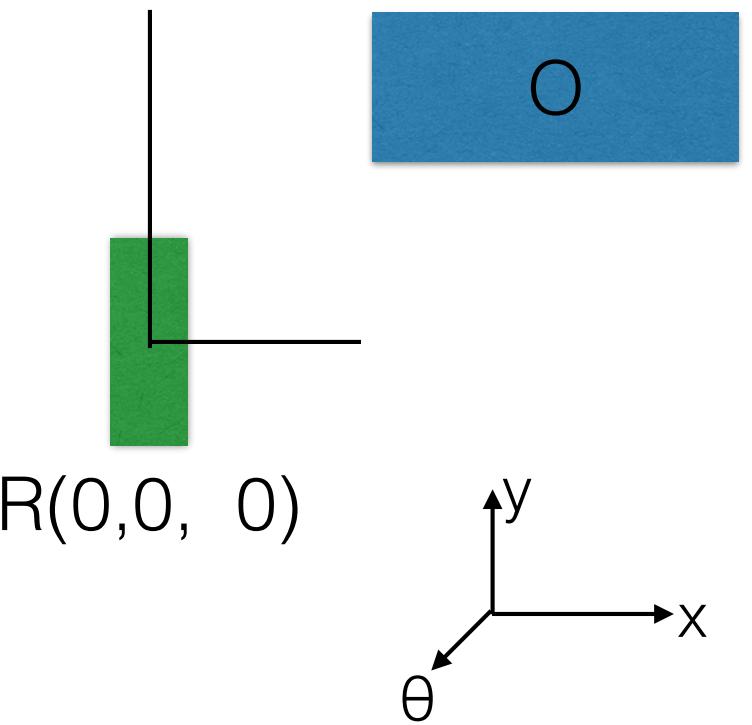
What about Rotating Robots?

- Rotation may be necessary to complete the task

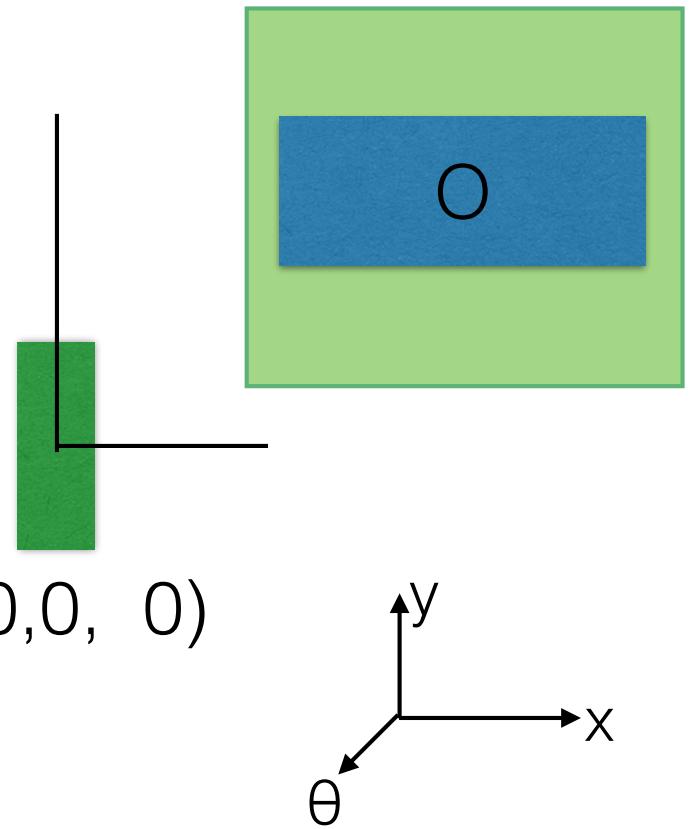


Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

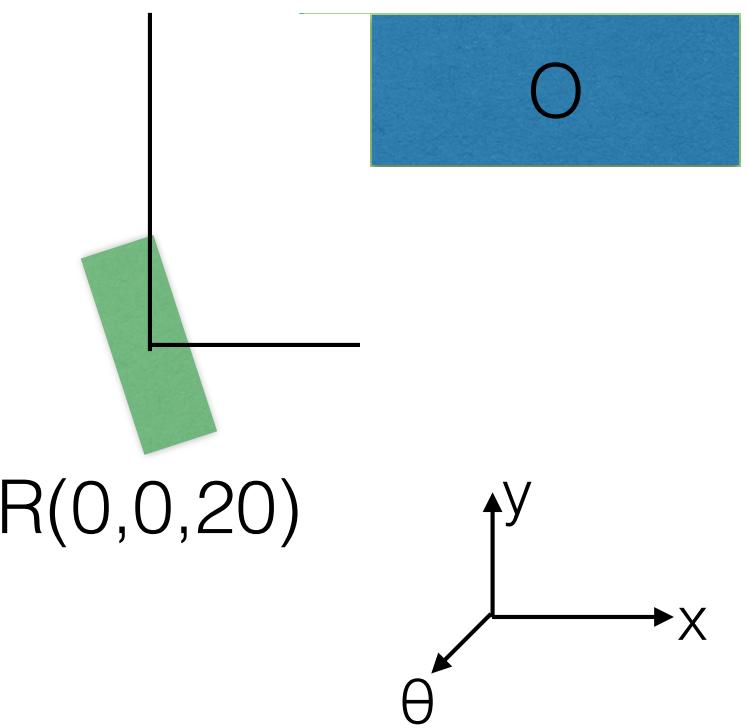


- What does a C-obstacle look like when rotations are allowed?

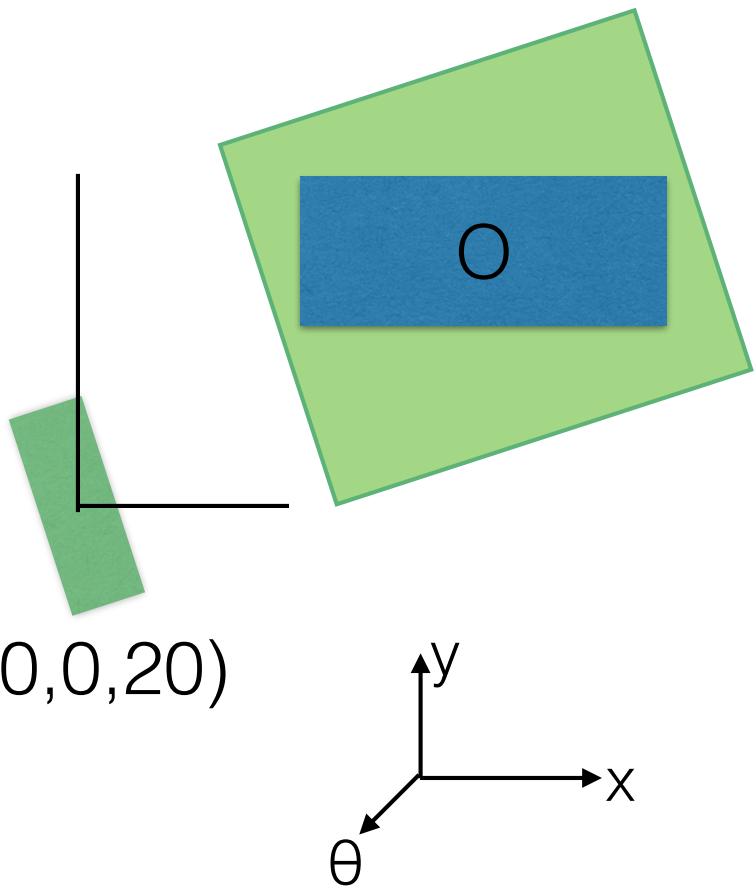


$R(0,0, 0)$

- What does a C-obstacle look like when rotations are allowed?

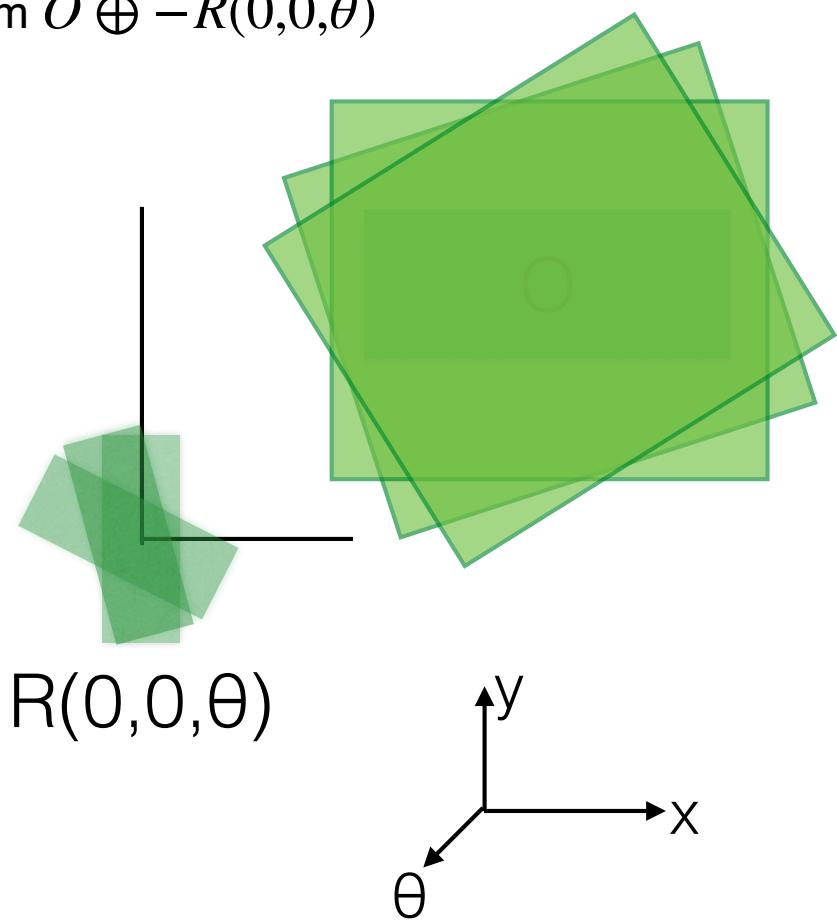


- What does a C-obstacle look like when rotations are allowed?

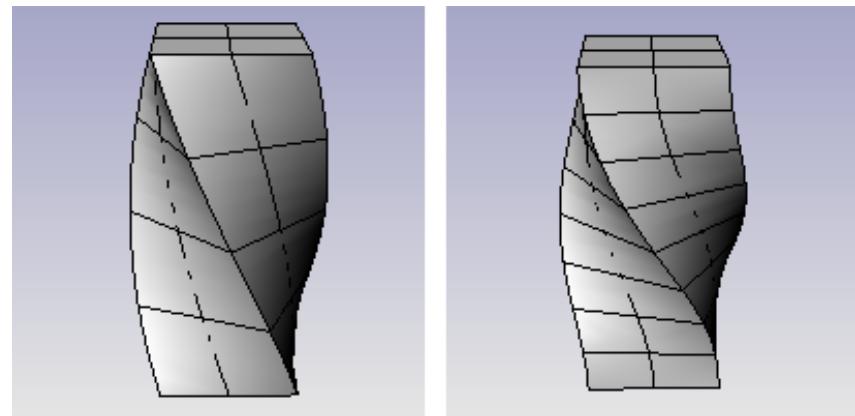


A C-obstacle is a 3D shape, with curved boundaries

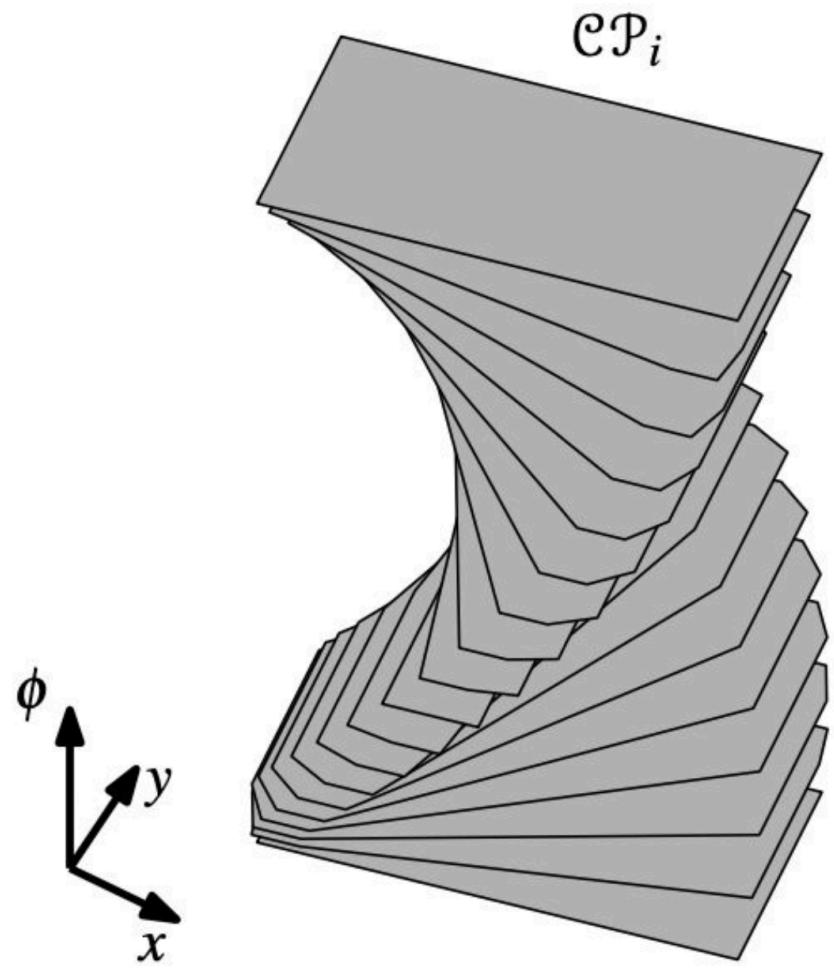
- Imagine moving a vertical plane through C-space. Each position of the plane will correspond to a fixed θ .
- Each cross-section of a C-obstacle is a Minkowski sum $O \oplus -R(0,0,\theta)$
- => twisted pillar



configuration space



configuration space



Polygonal robot in 2D with rotations

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is $O(n^2)$ for convex, $O(n^3)$ for non-convex robot
- Planner:
 1. Compute C-obstacles and C-free
 2. Compute a decomposition of free space into simple cells
 3. Construct a roadmap
 4. BFS on roadmap

space is 3D

Difficult to construct a good cell decomposition for curved 3D space

An idea to approximate this

One possible approximate 3d roadmap

- Discretize rotation angle and compute a finite number of slices, one for each angle
- For a fixed angle: you got translational motion planning
 - Construct a trapezoidal decomposition for each slice and its roadmap
- Link them into a 3D roadmap: Add “vertical” edges between slices to allow robot to move up/down between slices; these correspond to rotational moves.
- Example: Consider two consecutive angles a and b . If placement (x,y) is in free space in slice a , and (x,y) is in free space in slice b , then the 3D roadmap should contain a vertical edge between slice a and b at that position
- Is this complete?
 - No, it's an approximation.

Combinatorial/geometric path planning: Summary

- Compute the free C-space geometrically (= exactly)
- **A geometric planner**
 - Compute extended obstacles and free C-space
 - Compute roadmap of free C-space: trapezoidal decomposition or visibility graph
- **Comments**
 - Complete
 - Works beautifully in 2D and for some cases in 3D
 - Worst-case bound for combinatorial complexity of C-objects in 3D is high
 - Unfeasible/intractable for high #dif
 - A complete planner in 3D runs in $O(2^{n^{\#dof}})$