
kd-trees
k-dimensional search trees

2D Range searching

Given a set of n points in 2D and an arbitrary range , find all
points in this range

[x1, x2] × [y1, y2]

x1 x2

y1

y2

Build a structure to

answer this efficiently

x1 x2

y1

y2

BST in x-order BST in y-order

A BST is a 1D structure. If it is ordered by x, it can answer x-range queries. If it is
ordered by y, it can answer y-range queries.

Partitions the space in vertical strips

(16, 3)

(7, 50) (20, 5)

x- order

(20, 5)

(16, 3)
(7, 50)

y- order

A BST is a 1D structure. If it is ordered by x, it can answer x-range queries. If it is
ordered by y, it can answer y-range queries.

Partitions the space in horizontal strips

x-order

We have to search all vertical strips that intersect the range, which could have a
lot of points outside the range.

Not a good partition for range-searching!

Jon Bentley, in mid 1970s, while an undergrad, came up with this beautifully simple

idea to extend the BST to make it useful in both x- and y- dimensions

kd-trees
k-dimensional search trees

Space partition of a 2d-search tree

• The idea: recursively subdivide

the plane by vertical and horizontal

cut lines which alternate

• Cut lines are chosen to split the

points in half ==> logarithmic

height

The 2d-search tree

split points in two halves with a vertical line
The 2d-search tree

split each side into half with a horizontal line
The 2d-search tree

recurse
The 2d-search tree

stop when a region has 1 point

The 2d-search tree

stop when a region has 1 point

Couple of variants based on how exactly to choose the splitting line

• Choose the cut line so that it falls in between the points. Internal nodes
store lines, and points are only in leaves.

• Chose the cut line so that it goes through the median point, and store the
median in the internal node.

• Choose the cut line so it goes through the median point. Internal nodes
store lines, and points are only in leaves.

This is the standard choice and simplifies the details

The 2d-search tree

p1

p2

p3

The 2d-search tree

Include the median point to the first side, consistently.

split with vertical line through x-median

p1

p2

p3

l1

l1

include median in left child

right of l1: { p3 }left_or_on l1: { p1, p2 }

The 2d-search tree

p1

p2

p3

l1

l1

p3

right of l1: p3 => leaf

right of l1: { p3 }left_or_on l1: { p1, p2 }

The 2d-search tree

p1

p2

p3

l1

l1

p3

left_on l1: p1,p2 => recurse

left_or_on l1: { p1, p2 }

The 2d-search tree

split with horizontal line through y-median

p1

p2

p3

l1

l1

include median in left child

l2

l2 p3

The 2d-search tree

p1

p3

l1

l1

below_or_on l2: { p2 }

l2

l2 p3

above l2: { p1 }

split with horizontal line through y-median
include median in left child

The 2d-search tree

p2

p1

p2

p3

l1

l2

l1

l2 p3

p2 p1

The 2d-search tree

A bigger example

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

split with vertical line through x-median
median goes to the left side

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

A bigger example

split each side with horizontal line through y-median

p1

p2

p3

median goes to the left side

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

A bigger example

repeat

p1

p2

p3

p4

p5

p6

p7

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

l4

l5

l6

l7

A bigger example

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

l12

l13

A bigger example

draw the corresponding 2d-tree

l14

Given a set of points P:
How do we build their kd-tree?

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

The 2d-search tree

Analysis: Let T(n) be the time to build a kdtree of n points.

Then T(n) = 2T(n/2) + O(n) , which solves to O(n lg n).

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

• Practical notes

• The O(n) median finding algorithm is not practical. Either use a randomized
median finding (QuickSelect); or, better,

• Avoid needing to find a median by pre-sorting the points

• sort P by x- coord and, separately by y-coord only once at the
beginning, before building the tree, and pass them as parameters

• BuildKDtree (P-sorted-by-x, P-sorted-by-y, depth)

The 2d-search tree

Theorem: A 2d-tree for a set of points in the plane can be built in time

and uses space.

n Θ(n lg n)
Θ(n)

you’ll work out the details in project 3

the corresponding 2d-tree

l8

l9 l12

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

l4

l5

l6

l7

l10

l11

l13
l14

space partition corresponding
to the 2d-tree

l3

l1

l2

l6 l4 l7 l5

…………..

Each node in the tree corresponds to a region in the plane.

whole plane

l1

l1

all leaves are right of l1

all leaves are left_on l1

left_on l1 right l1l1

A line in the plane defines two half-planes

l1

l1

l2

l2

The region of a node

left_on l1 right l1

l1

l1

l2

l2

The region of a node

left_on l1

above l2

l1

l1

l2

l2

The region of a node

left_on l1

below_on l2

l1

l1

l2

l2

l3

l3

The region of a node

left_on l1

below_on l2

The region of a node

l1

l1

l2

l2

l3

l3

left_on l1

below_on l2

left_on l3 right l3

l1

l1

l2

l2

l3

l4

l3

l4

The region of a node

left_on l1

below_on l2

right l3

l1

l1

l2

l2

l3

l4

l3

l4

The region of a node

left_on l1

below_on l2

above l4below_on l4

right l3

l1
Each node in the tree corresponds to a region in the plane, which is the intersection of the
half-planes of all it’s ancestors.

l2

l3

l4

l1

l2

l3

l4

left_on l1

below_on l2

right of l3

above l4

v

region(v)

the corresponding 2d-tree

l8

l9 l12

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

l4

l5

l6

l7

l10

l11

l13
l14

space partition corresponding
to the 2d-tree

l3l3

l1

l2

Exercise: express the region corresponding to, e.g., second grandchild of this node

How do we answer range queries on kd-trees ?

p1

p2

p3

l1

l2

l1

l2 p3

p2 p1

region(v1)

p1

p2

p3

l1

l2

p3

p2 p1

region(v1)

l1

l2

v

all points in tree(v) are in region(v)

region(v)

Range queries: general idea

region(left(v))

v

region(left(v))

Case 1:range intersects both children

Case 2: range intersects only one child
Case 3: child completely contained in range

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Analysis:

What’s the running time of a range search with a kd-tree?

The running time of a range-search with a kd-tree

• For each node we can visit and recurse on one or both of its children

• The nb. of points in a child is half the nb. of points in the parent

• If at every node v we only recurse on one child =>

• If at every node v we recurse on both children:

• Here we visit the children intersected by the range, which can be one or both

• So what’s the running time of a search? or

T(n) = T(n /2) + O(1) which solves to O(lg n)

T(n) = 2T(n /2) + O(1) which solves to O(n)

O(lg n)? O(n)?

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

c c

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

• never visited by the query

• visited may or may not have points to report

• visited and whole subtree is output

points guaranteed
to be in the range

The time to answer a range search = O(green nodes + red nodes)

Furthermore, nb.green nodes = O(k), where k = size of output

• region(v) does not intersect the range

• region(v) intersects the range but is not included in the range

• region(v) is completely included in the range

• never visited by the query

• visited may or may not have points to report

• visited and whole subtree is output

Claim:

The time to answer a range search = O(red nodes) + O(k)

how many red nodes?

How many red nodes?

nb. red nodes = nb. nodes such that the boundary of their region intersects the
boundary of the range

Simplified problem: We’ll count the number of nodes whose region intersects a
vertical line l.

• depth=0: region(root) intersects l
We’ll think recursively, starting at the root:

Number of nodes v such that region(v) intersects a vertical line l?

+1

We’ll think recursively, starting at the root:

Number of nodes v such that region(v) intersects a vertical line l?

+1• depth=0: region(root) intersects l
• depth=1: only one of {left, right} child intersects l +1

We’ll think recursively, starting at the root:

Number of nodes v such that region(v) intersects a vertical line l?

• depth=2: both {left, right} child intersect l recurse
• depth=1: only one of {left, right} child intersects l

+1• depth=0: region(root) intersects l
+1

• Let G(n) = nb. of nodes in a kdtree of n points whose regions interest a vertical line l.

• Then , and

• This solves to

G(n) = 2 + 2G(n /4) G(1) = 1

G(n) = O(n)

Theorem: Any vertical or horizontal line stabs regions in the kdtree.O(n)

Number of nodes v such that region(v) intersects a vertical line l?

• depth=2: both {left, right} child intersect l recurse
• depth=1: only one of {left, right} child intersects l

+1• depth=0: region(root) intersects l
+1

We’ll think recursively, starting at the root:

What we know so far:

• The number of red nodes (regions intersected) if the query were a vertical line is

• The same is true if it were a horizontal line

• How about a query rectangle?

O(n)

• Theorem: The number of nodes in the kdtree whose region intersects a
query range is at most 4 × O(n) = O(n)

If the boundary of a region
intersects the range => it must
intersect at least one of the two
vertical and two horizontal lines

Kd-trees in 2D

Theorem: The kd-tree for a set of points in 2D

• space:

• built: time

• 2-dimensional range queries: time, where is the nb. points
reported.

n
O(n)

O(n lg n)
O(n + k) k

Kdtrees generalize easily to d-dimensions

• A 3D range query is a cube

• A 3D kd-tree alternates splits on x-, y- and z-dimensions

• Construction: Same as in 2D

• Answering range queries: Exactly the same as in 2D

• Analysis:

kd-trees in 3D

• Let = nb. of nodes in a kdtree of n points
whose regions interest a vertical line l.

• Then , and

• This solves to

• 3D-range queries in

G3(n)

G3(n) = 4G3(n /8) + O(1) G(1) = 1

G3(n) = O(n2/3)

O(n2/3 + k)

Kd-trees in higher dimensions

Theorem: The kd-tree for a set of points in d-space:

• uses space

• can be built in time

• d-dimensional range query can be answered in time, where
is the nb. points reported.

n
O(n)

O(n lg n)
O(n1−1/d + k) k

