
kd-trees
k-dimensional search trees



2D Range searching 

Given a set of n points in 2D and an arbitrary range , find all 
points in this range 

[x1, x2] × [y1, y2]

x1 x2

y1

y2

Build a structure to 

answer this efficiently



x1 x2

y1

y2

BST in x-order BST in y-order

A BST is a 1D structure. If it is ordered by x, it can answer x-range queries. If it is 
ordered by y, it can answer y-range queries. 



Partitions the space in vertical strips

(16, 3)

(7, 50) (20, 5)

x- order

(20, 5)

(16, 3)
(7, 50)

y- order

A BST is a 1D structure. If it is ordered by x, it can answer x-range queries. If it is 
ordered by y, it can answer y-range queries. 

Partitions the space in horizontal strips



x-order

We have to search all vertical strips that intersect the range, which could have a 
lot of points outside the range.

Not a good partition for range-searching!



Jon Bentley, in mid 1970s, while an undergrad, came up with this beautifully simple 

idea to extend the BST to make it useful in both x- and y- dimensions

kd-trees
k-dimensional search trees

Space partition of a 2d-search tree

• The idea:  recursively subdivide 

the plane by vertical and horizontal 

cut lines which alternate


• Cut lines are chosen to split the 

points in half ==> logarithmic 

height



The 2d-search tree



split points in two halves with a vertical line
The 2d-search tree



split each side into half with a horizontal line
The 2d-search tree



recurse
The 2d-search tree

stop when a region has 1 point



The 2d-search tree

stop when a region has 1 point



Couple of variants based on how  exactly to choose the splitting line


• Choose the cut line so that it falls in between the points. Internal nodes 
store lines, and points are only in leaves. 


• Chose the cut line so that it goes through the median point, and store the 
median in the internal node.


• Choose the cut line so it goes through the median point. Internal nodes 
store lines, and points are only in leaves. 

This is the standard choice and simplifies the details

The 2d-search tree



p1

p2

p3

The 2d-search tree

Include the median point to the first side, consistently.



split with vertical line through x-median

p1

p2

p3

l1

l1

include median in left child

right of l1: { p3 }left_or_on l1: { p1, p2 }

The 2d-search tree
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p3

l1

l1

p3

right of l1: p3 => leaf

right of l1: { p3 }left_or_on l1: { p1, p2 }

The 2d-search tree



p1

p2

p3

l1

l1

p3

left_on l1: p1,p2 => recurse

left_or_on l1: { p1, p2 }

The 2d-search tree



split with horizontal line through y-median
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p3

l1

l1

include median in left child

l2

l2 p3

The 2d-search tree



p1

p3

l1

l1

below_or_on l2: { p2 }

l2

l2 p3

above l2: { p1 } 

split with horizontal line through y-median
include median in left child

The 2d-search tree

p2
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The 2d-search tree



A bigger example
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split with vertical line through x-median
median goes to the left side
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split each side with horizontal line through y-median
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draw the corresponding 2d-tree

l14



Given a set of points P: 
How do we build their kd-tree?



screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

The 2d-search tree

Analysis: Let T(n) be the time to build a kdtree of n points. 


Then  T(n) = 2T(n/2) + O(n) , which solves to O( n lg n).

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf


• Practical notes 


• The O(n) median finding algorithm is not practical. Either use a randomized 
median finding (QuickSelect); or, better,


• Avoid needing to find a median by pre-sorting the points 


• sort P by x- coord and, separately by y-coord only once at the 
beginning, before building the tree, and pass them as parameters


• BuildKDtree (P-sorted-by-x, P-sorted-by-y, depth) 

The 2d-search tree

Theorem: A 2d-tree for a set of  points in the plane can be built in   time 

and uses  space.  

n Θ(n lg n)
Θ(n)

you’ll work out the details in project 3



the corresponding 2d-tree
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Each node in the tree corresponds to a region in the plane. 

whole plane



l1

l1

all leaves are right of l1

all leaves are left_on l1

left_on l1 right l1l1



A line in the plane defines two half-planes
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The region of a node

left_on l1 right l1
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The region of a node
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above l2
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The region of a node

left_on l1

below_on l2
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The region of a node

left_on l1

below_on l2



The region of a node
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l1
Each node in the tree corresponds to a region in the plane, which is the intersection of the 
half-planes of all it’s ancestors. 
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the corresponding 2d-tree
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Exercise: express the region corresponding to, e.g.,  second grandchild of this node 



How do we answer range queries on kd-trees ? 
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region(v1)
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v

all points in tree(v) are in region(v)

region(v) 

Range queries: general idea



region(left(v)) 

v

region(left(v)) 

Case 1:range intersects both children

Case 2: range intersects only one child
Case 3: child completely contained in range



screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf


Analysis:  

What’s the running time of a range search with a kd-tree?



The running time of a range-search with a kd-tree

• For each node we can visit and recurse on one or both  of its children


• The nb. of points in a child is half the nb. of points in the parent  


• If at every node v  we only recurse on one child =>  



• If at every node v  we recurse on both children: 



• Here we visit the children intersected by the range, which can be one or both


• So what’s the running time of a search?      or 

T(n) = T(n /2) + O(1) which solves to O(lg n)

T(n) = 2T(n /2) + O(1) which solves to O(n)

O(lg n)? O(n)?



screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf
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• never visited by the query

• visited may or may not have points to report

• visited and whole subtree is output

points guaranteed 
to be in the range

The time to answer a range search =  O(green nodes + red nodes)

Furthermore,  nb.green nodes = O(k), where k = size of output



• region(v) does not intersect the range 

• region(v) intersects the range but is not included in the range

• region(v) is completely included in the range

• never visited by the query

• visited may or may not have points to report

• visited and whole subtree is output

Claim:

The time to answer a range search =  O(red nodes) + O(k) 

how many red nodes?



How many red nodes?

nb. red nodes = nb. nodes  such that the boundary of their region intersects the 
boundary of the range

Simplified problem:  We’ll count the number of nodes whose region intersects a 
vertical line l.



• depth=0:   region(root) intersects l
We’ll think recursively, starting at the root: 

Number of nodes v such that region(v) intersects a vertical line l?

+1



We’ll think recursively, starting at the root: 

Number of nodes v such that region(v) intersects a vertical line l?

+1• depth=0:   region(root) intersects l
• depth=1:   only one of {left, right}  child intersects l +1



We’ll think recursively, starting at the root: 

Number of nodes v such that region(v) intersects a vertical line l?

• depth=2:   both {left, right}  child intersect l recurse
• depth=1:   only one of {left, right}  child intersects l

+1• depth=0:   region(root) intersects l
+1



•  Let G(n) = nb. of nodes in a kdtree of n points whose regions interest a vertical line l. 


• Then ,  and 


• This solves to 

G(n) = 2 + 2G(n /4) G(1) = 1

G(n) = O( n)

Theorem: Any vertical or horizontal line stabs    regions in the kdtree.O( n)

Number of nodes v such that region(v) intersects a vertical line l?

• depth=2:   both {left, right}  child intersect l recurse
• depth=1:   only one of {left, right}  child intersects l

+1• depth=0:   region(root) intersects l
+1

We’ll think recursively, starting at the root: 



What we know so far:


• The number of red nodes (regions intersected) if the query were a vertical line is  



• The same is true if it were a horizontal line 


• How about a query rectangle?

O( n)

• Theorem:  The number of nodes in the kdtree whose region intersects a 
query range is at most 4 × O( n) = O( n)

If the boundary of a region 
intersects the range => it must 
intersect at least one of the two 
vertical and two horizontal lines 



Kd-trees in 2D

Theorem: The kd-tree for a set of  points in 2D

• space:  

• built:  time 


• 2-dimensional range queries:  time, where  is the nb. points 
reported.

n
O(n)

O(n lg n)
O( n + k) k



Kdtrees generalize easily to d-dimensions 



• A 3D range query is a cube


• A 3D kd-tree alternates splits on x-, y- and z-dimensions


• Construction: Same as in 2D


• Answering range queries: Exactly the same as in 2D


• Analysis:

kd-trees in 3D

•  Let  = nb. of nodes in a kdtree of n points 
whose regions interest a vertical line l. 


• Then ,  and 


• This solves to 


• 3D-range queries in 

G3(n)

G3(n) = 4G3(n /8) + O(1) G(1) = 1

G3(n) = O(n2/3)

O(n2/3 + k)



Kd-trees in higher dimensions

Theorem: The kd-tree for a set of  points in d-space: 


• uses   space


• can be built in  time 


• d-dimensional range query can be answered in   time, where  
is the nb. points reported.

n
O(n)

O(n lg n)
O(n1−1/d + k) k


