viewPoints

kd-trees

k-dimensional search trees

2D Range searching

Given a set of n points in 2D and an arbitrary range [x;, X,] X [y;, ¥,], find all
points in this range

A BST is a 1D structure. If it is ordered by x, it can answer x-range queries. If it is
ordered by vy, it can answer y-range queries.

BST in x-order BST in y-order

X1 X2 .

A BST is a 1D structure. If it is ordered by x, it can answer x-range queries. If it is
ordered by vy, it can answer y-range queries.
|

AEANEA

/N NN I
|

X- order

Partitions the space in vertical strips Partitions the space in horizontal strips

Not a good partition for range-searching!

We have to search all vertical strips that intersect the range, which could have a
lot of points outside the range.

kd-trees

k-dimensional search trees

Jon Bentley, in mid 1970s, while an undergrad, came up with this beautifully simple

idea to extend the BST to make it useful in both x- and y- dimensions

_[L | » The idea: recursively subdivide
: O the plane by vertical and horizontal

= cut lines which alternate

» Cut lines are chosen to split the

points in half ==> logarithmic
height

Space partition of a 2d-search tree

The 2d-search tree

The 2d-search tree
split points in two halves with a vertical line

The 2d-search tree
split each side into half with a horizontal line

The 2d-search tree
recurse

stop when a region has 1 point

The 2d-search tree

stop when a region has 1 point

The 2d-search tree

Couple of variants based on how exactly to choose the splitting line

e Choose the cut line so that it falls in between the points. Internal nodes
store lines, and points are only in leaves.

e Chose the cut line so that it goes through the median point, and store the
median in the internal node.

e Choose the cut line so it goes through the median point. Internal nodes
store lines, and points are only in leaves.

This is the standard choice and simplifies the details

The 2d-search tree

Include the median point to the first side, consistently.

p3

The 2d-search tree

split with vertical line through x-median

’ include median in left child

left_or_on I1: { p1, p2 } right of 11: { p3 }

D—»

p3

The 2d-search tree
right of [1: p3 => leaf

left_or_on I1: { p1, p2} right of 11: { p3 }

p3
—

p3

The 2d-search tree

left_on I1: p1,p2 => recurse

p3

left_or_on I1: { p1, p2}

p3

The 2d-search tree

split with horizontal line through y-median

1

p3

include median in left child

(
/N

The 2d-search tree

split with horizontal line through y-median

1

p3

include median in left child

below_or_on 12: {Mve 12: {p1)

The 2d-search tree

p3

p1

A bigger example

o P1
P4 ® 06
p13 ® p15
pi12 @
@ p3
2
P
] .p9
p11
S
]
e p10 p7

pP5

A bigger example

split with vertical line through x-median
median goes to the left side

g P
P4 ® 06
® 14 ®
p13 p. P15
p12 @
@ p3
>
P
] .p9
p11
@ .p7
5 @ p10
P ®
p8

A bigger example

split each side with horizontal line through y-median

. median goes to the left side

«¢ P1
P ® 06
p13 ® p15
13
p12 s
] p3
12
=
p
lz @ .p9
p11
@
@
5 ® p10 p7
P ®
p8

A bigger example

15
repeat
14
1
¢ P
p4‘ qp6
p13 ® p15
13
pi12 ®
& p3
12
¥
P
] .p9
p11
®
7
p10 P
pS ,
p8
|7

A bigger example

15
14
1
draw the corresponding 2d-tree
¢ P
p4¢ 106
18 . .
14 111
p13 _p'_ p15
13
pi12 ®
*“o| P3
2
2
P
2 .p9
p11
14
19 _Ui'_—‘p7
1 p10
112
PS .
P8

Given a set of points P:
How do we build their kd-tree?

The 2d-search tree

Algorithm BUILDKDTREE(P, depth)

1. if P contains only one point

2 then return a leaf storing this point

3. else if depth is even

4 then Split P with a vertical line ¢ through the
median x-coordinate into Py (left of or
on /) and P, (right of £)

5. else Split P with a horizontal line £ through
the median y-coordinate into P; (below
or on ¢) and P, (above ¢)

6. Vieft < BUILDKDTREE(P;,depth+ 1)

1. Vright < BUILDKDTREE(P;,depth+ 1)

8. Create a node Vv storing £, make Vi the left
child of v, and make Vg the right child of v.

0. return v

Analysis: Let T(n) be the time to build a kdtree of n points.
Then T(n) = 2T(n/2) + O(n) , which solves to O(n Ign).

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

The 2d-search tree

Theorem: A 2d-tree for a set of n points in the plane can be built in ®O(nlgn) time

and uses ®(n) space.

* Practical notes

* The O(n) median finding algorithm is not practical. Either use a randomized
median finding (QuickSelect); or, better,

» Avoid needing to find a median by pre-sorting the points

 sort P by x- coord and, separately by y-coord only once at the
beginning, before building the tree, and pass them as parameters

» BuildKDtree (P-sorted-by-x, P-sorted-by-y, depth)

you'll work out the details in project 3

space partition corresponding

to the 2d-tree

I
Iy
L
4 P
p4 1
& | p6
v 14 | @
lg 013 P 11 015
p12 ®
- 3
Lo P
b
00
® .p9
p11
/ l14
7
| = 10 P
L 05 P .
P8

the corresponding 2d-tree

whole plane
~

Each node in the tree corresponds to a region in the plane.

A line in the plane defines two half-planes

- "
[3 "y
[3d]
.]
.]
.]
.]
.
. ‘e
. e
.l

The region of a node

The region of a node

The region of a node

The region of a node

The region of a node

left_on |1 E

below_on IZ\

left_on I3 right I3
R

The region of a node

left_on |1 E

below_on IZ\

The region of a node
. X left_on |1

@ @
@ ° @
- @
D @
' ' ° below_on IZ\
|2 , @ °
@ @ ® EY
g 14 * 5
[right I3
] . =] . f
@
@

below on |4 above |4

/7 N\

Each node in the tree corresponds to a region in the plane, which is the intersection of the
half-planes of all it’s ancestors.

1 left_on 1

@
@ ° o]
@
@
@ @
° o o below_on E\

12 9 @ -
] e k- @
@
. 14 v .
-2 *e :

right of I3
IR

@ - 00’. @ \

® "’0,
2 ‘.,
0...

above |4

w

—

)
o

o

29
—~~

<
~

Exercise: express the region cogresponding to, e.g., second grandchild of this node

112

|4
[1
4 P
4 4
P J p6
® 14 111 @
8 p13 _'_p p15
p12 ®
"0 p3
|2
>
g ® *p9
Pkl
11 Lia
- le—— .
- P
PS .
P8
|7

M space partition corresponding
to the 2d-tree

the corresponding 2d-tree

How do we answer range queries on kd-trees ?

p3

p3

p2

p3

p1

Range queries: general idea

s . E ’ region(v) m—

region(left(v)) region(left(v))

Case 1:range intersects both children

Case 2: range intersects only one child

Case 3: child completely contained in range

Algorithm SEARCHKDTREE(V,R)
Input. The root of (a subtree of) a kd-tree, and a range R
Output. All points at leaves below v that lie in the range.
if vis a leaf
then Report the point stored at v if it lies in R
else if region(lc(v)) is fully contained in R
then REPORTSUBTREE(lc(V))
else if region(lc(v)) intersects R
then SEARCHKDTREE(lc(V),R)
if region(rc(v)) is fully contained in R
then REPORTSUBTREE(rc(V))
else if region(rc(v)) intersects R
then SEARCHKDTREE(r¢(V),R)

OO0 NOSOOTRWNH

-
©

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Analysis:

What’s the running time of a range search with a kd-tree?

The running time of a range-search with a kd-tree

* For each node we can visit and recurse on one or both of its children
* The nb. of points in a child is half the nb. of points in the parent

* |If at every node v we only recurse on one child =>
T(n) = T(n/2) + O(1) which solves to O(1g n)

» |f at every node v we recurse on both children:
T(n) =2T(n/2) + O(1) which solves to O(n)

* Here we visit the children intersected by the range, which can be one or both

« So what's the running time of a search? O(lgn)? or O(n)?

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

P13

D7 P8 @P9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

P13

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

P13

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

P13

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

P13

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

P13

P7RPs BP9 P10

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

D4l

Ps

*D13

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

P13

P7RPs BP9 P10

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

D4l

Ps

*D13

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

P13

P7RPs BP9 P10

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

P13

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

P13

P7RPs BP9 P10

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

P13

P7RPs BP9 P10

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

| P12

P13

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

| P12

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

4

P7RPs BP9 P10

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

‘ never visited by the query
‘ visited may or may not have points to report
‘ visited and whole subtree is output

‘ . points guaranteed

to be in the range

The time to answer a range search = O(green nodes + red nodes)

Furthermore, nb.green nodes = O(k), where k = size of output

‘ never visited by the query
‘ visited may or may not have points to report
‘ visited and whole subtree is output

Claim:

. region(v) does not intersect the range
‘ region(v) intersects the range but is not included in the range

’ region(v) is completely included in the range

The time to answer a range search = O(red nodes) + O(K)

how many red nodes?

How many red nodes?

nb. red nodes = nb. nodes such that the boundary of their region intersects the
boundary of the range

Simplified problem: We'll count the number of nodes whose region intersects a
vertical line |.

Number of nodes v such that region(v) intersects a vertical line |7

We'll think recursively, starting at the root:

« depth=0: region(root) intersects [+ 1

Number of nodes v such that region(v) intersects a vertical line |7

We'll think recursively, starting at the root:

« depth=0: region(root) intersects [+ 1
 depth=1: only one of {left, right} child intersects [+ 1

Number of nodes v such that region(v) intersects a vertical line |7

We'll think recursively, starting at the root:
« depth=0: region(root) intersects [+ 1

« depth=1: only one of {left, right} child intersects [+1
« depth=2: Dboth {left, right} child intersect [

Number of nodes v such that region(v) intersects a vertical line |7

We'll think recursively, starting at the root:

« depth=0: region(root) intersects [+ 1
« depth=1: only one of {left, right} child intersects [+1
« depth=2: Dboth {left, right} child intersect [

* Let G(n) = nb. of nodes in a kdtree of n points whose regions interest a vertical line |.

e ThenG(n) =2+ 2G(n/4), and G(1) =1
« This solves to G(n) = 0(\/;)

Theorem: Any vertical or horizontal line stabs 0(\/%) regions in the kdtree.

What we know so far:

* The number of red nodes (regions intersected) if the query were a vertical line is
O(y/n)

» The same is true if it were a horizontal line

* How about a query rectangle?

[S I) S If the boundary of a region
_ intersects the range => it must
sk R el e intersect at least one of the two
o e vertical and two horizontal lines

Theorem: The number of nodes in the kdtree whose region intersects a

query range is at most 4 X O(\/E) = O(\/Z)

Kd-trees in 2D

Theorem: The kd-tree for a set of n points in 2D
« space: O(n)
o built: O(nlgn) time

« 2-dimensional range queries: O(\/Z + k) time, where k is the nb. points
reported.

Kdtrees generalize easily to d-dimensions

kd-trees in 3D

A 3D range query is a cube

A 3D kd-tree alternates splits on x-, y- and z-dimensions

e Construction: Same as in 2D
* Answering range queries: Exactly the same as in 2D
* Analysis:

« Let G5(n) = nb. of nodes in a kdtree of n points
whose regions interest a vertical line |.

« Then G3(n) = 4G3(n/8) + O(1), and G(1) =1

. This solves to G4(n) = O(n??)

. 3D-range queries in O(n?> + k)

Kd-trees in higher dimensions

Theorem: The kd-tree for a set of n points in d-space:
e uses O(n) space
e can be built in O(nlg n) time

« d-dimensional range query can be answered in O(n' = + k) time, where k
is the nb. points reported.

