
3D convex hulls

Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

2D 3D

polygon polyhedron
flat, plane, two-dimensional closed shape

bounded by line segments A three-dimensional shape with flat polygonal faces

A polyhedron is a region of space whose boundary consists of vertices, edges
and (flat) faces, such that:

• Faces intersect properly

• two faces are either disjoint; or

• have a single vertex in common; or

• have two vertices and the edge between them in common

A polyhedron is a region of space whose boundary consists of vertices, edges
and (flat) faces, such that:

• Faces intersect properly

• The local topology must be proper (a neighborhood of every point must
be homeomorphic with an open disk)

https://plus.maths.org/content/eulers-polyhedron-formula

v

Proper topology: The link of any vertex be is a simple, closet polygonal path.

v

Proper topology: The link of any vertex be is a simple, closet polygonal path.

v

Proper topology: The link of any vertex be is a simple, closet polygonal path.

Proper topology: The link of any vertex be is a simple, closet polygonal path.

Proper topology: The link of any vertex be is a simple, closet polygonal path.

genus=1

A polyhedron is a region of space whose boundary consists of vertices, edges
and (flat) faces, such that:

• Faces intersect properly

• The local topology must be proper

• Also the global topology must be proper: surface is connected, closed and
bounded.

• Holes are allowed, as long as they don’t disconnect

• The nb of holes is called the genus of the surface

genus=0

Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.

convex non-convex

Convexity

convex non-convex

A polyhedron P is convex if for any p, q in P, the segment pq lies entirely in P.

Convex polygons: All angles in a convex polygon are .
(necessary and sufficient)

≤ π

convex non-convex

reflex

Angle between two planes (α, β, green) in a third plane (pink) which cuts the line of
intersection at right angles

A dihedral angle is the angle between two intersecting planes.

Convex polyhedra

• All dihedral angles are
 (Necessary and sufficient.)  

• Sum of angles around a vertex is
(Necessary but not sufficient).  

≤ π

≤ 2π

Euler’s formula

• Euler noticed a remarkable regularity in the number of vertices,
edges and faces of a convex polyhedron of genus=0.

• Euler’s formula: V - E + F = 2

• Proof idea:

• flatten the polygon to a plane

• prove the formula for a tree

• prove for any planar graph by induction on E

O(n) edges and faces

• Consider a polyhedron with vertices

• Triangulate its faces. This maximizes E and F.

• We have that:

•

•

• and from here it follows that and

• Result: The number of vertices, edges and faces in a polyhedron are linearly
related.

• We’ll say that a polyhedron with vertices has edges and faces

V = n

V − E + F = 2
3F = 2E

E = 3V − 6 = O(n) F = 2V − 4 = O(n)

n O(n) O(n)

digression start

• A regular polygon has equal
sides and angles

Regular polygons in 2D

Regular polyhedra in 3D

• Regular polyhedra:

• faces are congruent regular polygons

• the number of faces incident to each vertex is the same (and equal angles)

Surprisingly, there exist only 5 regular polytops

digression end

Convex Hulls

The problem: Given a set P of points, compute their convex hull

2D 3D

Convex Hulls

3D convex hull = smallest convex polyhedron that
contains P

2D convex hull = smallest convex polygon
(polytope) that contains P

• 3d hull consists of all extreme faces, edges and vertices

• All internal angles between faces are < 180

• Walking counterclockwise—> left turns

• Points on CH are sorted in radial order wrt a point inside

Properties of 3d hulls

3D

Faces, edges, vertices on the hull are extreme.

2D

Naive 3d hull

• For every triplet of points :

• check if face is extreme

• if True, add to the list of hull faces

(pi, pj, pk)

(pi, pj, pk)

3d hull: Naive algorithm

// return True if all points are on the same side of face (a,b,c)

face_is_extreme(point3d a, b, c, vector<point3d> points)

• face_is_extreme() runs in

• Naive() runs in

O(n)
O(n4)

2 signedArea(a,b,c) = det
a.x a.y 1

b.x b.y 1

c.x c.y 1

c

a

b

negative area

(c right/in front of ab)

positive area

(c left/behind ab)

c

2D

2 signedArea(a,b,c) = det
a.x a.y 1

b.x b.y 1

c.x c.y 1

c

a

b

negative area
(c right/in front of ab)

positive area
(c left/behind ab)

c

2D

6 signedVolume(a,b,c,d) = det
a.x a.y a.z 1

b.x b.y b.z 1

c.x c.y c.z 1

d.x d.y d.z 1

3D

a

b

c
d

negative volume
(d in front of face)

positive volume
(p behind face)

• The convention is that all faces of a polyhedron are oriented so that their
normals determined by the right-hand rule point towards the outside.

p

a

b

c

negative volume

(p in front of face)

positive volume

(p behind face)

p

p

a

b

c

positive volume

(p behind face)

negative volume

(p in front of face)

p

Gift wrapping

Gift wrapping in 3D

• YouTube

• Video of CH in 3D (by Lucas Benevides)

https://www.youtube.com/watch?v=4dBHgu9zNFg

• First face: find a face guaranteed to be on the CH
• REPEAT

• find an edge of a face that’s on the CH, and such that the face on the
other side of has not been found.

• for all remaining points , find the angle of with

• find point with the max angle; add face to CH

e f
e

pi (e, pi) f
pi (e, pi)

Gift wrapping

• This runs in time where F is the number of faces on CHO(n ⋅ F)

O(n)

O(n)

Gift wrapping

• How to find a first face?

• How to keep track of the boundary of the hull (the edges that have only one

face discovered)?

• How to keep track of the hull? Ideally we would need to store the connectivity

(what faces are adjacent, for an edge which faces its adjacent to, etc)

• How to find the angle between two faces, and the face with largest angle?

• First face: find a face guaranteed to be on the CH
• REPEAT

• find an edge of a face that’s on the CH, and such that the face on the
other side of has not been found.

• for all remaining points , find the angle of with

• find point with the max angle; add face to CH

e f
e

pi (e, pi) f
pi (e, pi)

3D: Given a face on the hull, find an adjacent face

It is the face with largest angle.

Put differently, it is the front-most face looking from e.

Given an edge e on the convex hull:
Next point p maximizes the angle with e.
Put differently, b is to the right of all points q.

rightmost

q

b

p

2D: Given an edge on the hull, find an adjacent vertex

e

• rightmost = p[0]

• for (i = 0; i < points.size(); i++)

• if p[i]==b continue;

• if rightOf(b, rightmost, points[i]): rightmost=points[i]

2D: Given an edge on the hull, find an adjacent vertex

rightmost

p[i]

b

• frontmost = p[0]
• for (i = 0; i < points.size(); i++)

• if p[i]== a or p[i]==b: continue;
• if inFront(a, b, frontmost, points[i]): frontmost=points[i]

3D: Given a face on the hull, find an adjacent face

rightmost/frontmost
face

e

a

b

p[i]

• Find an extreme point (e.g. max x-coord) p = (p.x, p.y. p.z)
• Temporarily create a (fake) point q = (p.x, p.y+1, p.z)
• Iterate through remaining points and find the front-most point r with respect

to (p, q)
• => (p,q,r) is an extreme face, so point r is guaranteed to be on the hull
• => edge (p,r) is on the hull
• Iterate through the remaining points, and find the vertex s that is front-most

with respect to (p, r)
• => face (p, r, s) is a face on the hull

How to find the first face?

IDEA 1

• Find a point on 3d-hull: ind an extreme point, say point with max x-
coord. Call this .

• Find an edge on the 3d-hull: Project all points on the xy-plane (ignore
their z-coord), and imagine computing the 2D-convex hull of the
projection. These edges will be on the 3D-hull. We only need one edge,
and to find it we can 2d-gift-wrap around to find the point
that is right-most when looking from . Thus edge is
on the 3d-hull.

• Find a face on the 3d-hull: find a point, call it , so that third is right
of all faces for all other points p.

first

first second
first (first, second)

third
(first, second, p)

How to find the first face?

IDEA 2

First point

First edge

First face

Gift wrapping

• How to keep track of the hull?
• How to keep track of the boundary of the hull?

• First face: find a face guaranteed to be on the CH
• REPEAT

• find an edge of a face that’s on the CH, and such that the face on
the other side of has not been found.

• for all remaining points , find the angle of with

• find point with the minimal angle; add face to CH

e f
e

pi (e, pi) f
pi (e, pi)

• Note: edges inside the hull, they have two adjacent faces. Edges on the boundary,
they have only one adjacent face

• The hull:

• vector<triangle3d> hull (Ideally a triangle has pointers to all adjacent faces)

• Boundary of the hull:

• a queue

• Edges that are done:

• need to search (is an edge e done?), and to update (mark edge e as done)

• First face: find a face guaranteed to be on the CH

•

•

• REPEAT

• Remove an edge from and mark is as done.

• Check if is done, and if so, continue

• Find a vertex so that for all other points , point is to the right of face

• Add face to , and add the new edges to

Hull = {}
Bnd = {}

e Bnd
e

p pi p (e, pi)
(e, p) Hull Bnd

Incremental

Incremental 3d hull

• initialize hull H of

• for i= 5 to n

• //invariant: H represents the CH of

• add to H and update H to represent the CH of

{p1, p2, p3, p4}

p1, p2, . . . , pi−1

pi
p1, p2, . . . , pi

2D 3D

Incremental 3d hull

3D

Imagine standing at p and looking towards the hull

The faces that are visible are precisely those that need to be discarded

The edges on the border of the visible region become the basis of the cone

p

• The convention is that all faces of a polyhedron are oriented so that their
normals determined by the right-hand rule point towards the outside.

p

a

b

c

negative volume

(p in front of face)

positive volume

(p behind face)

p

abc visible from pabc not visible from p

//return True if face abc is visible from point p
is_visible(a, b, c, p):

return signedVolume(a,b,c,p) < 0

Incremental 3d hull

• (sort points lexicographically)

• initialize of

• for each remaining point :

• for each face of H: check if is visible from

• find border edges

• for each border edge e construct a face and add it to

• for each visible face : delete from

H p1, p2, p3, p4

p
f f p

(e, p) H
f f H

O(n)
O(n)
O(n)
O(n)

• Incremental 3d-hull runs in time
• RIC: Randomly permute the vertices and then process them in that order,

while maintaining a “conflict” graph to speed up finding faces that are
visible and need to be deleted. Runs in

O(n2)

O(n lg n)

3D hull via divide & conquer

3d hull via divide & conquer

• divide points in two halves P1 and P2

• recursively find CH(P1) and CH(P2)

• merge

Result: Merging can be done in O(n) time ==> 3d-hull via divide-and-

conquer runs in O(n lg n) time.

Merging

Merging

The merged hull will add a “band” of faces between A and B

A
B

• Imagine rotating the plane around ab, until it touches A and B

Let be a plane touching A in a and B in bπ

Rotate around abπ

Rotate around abπ

one of these vertices

• Claim: When we rotate around ab, the first vertex hit is a vertex c

adjacent to a or b and vertex c has the smallest angle among all

neighbors of a,b

π

• Once hits c, a triangular face of the merged hull has been found π

Let be a plane touching A in a and B in bπ

Rotate around abπ

c

a

b

1. Find a common tangent ab

Merge

a

b

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

Merge

a

b
c

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

Merge

a

b
c

Merge

a

b
c

d

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

Merge

a

b
c

d
e

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

Merge

a

b
c

d
e

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

Merge

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

4. Delete hidden faces

The hidden faces

• Find the edges on the “boundary” of the cylinder

• BFS or DFS faces “towards” the cylinder

• All faces reached are inside

3d hull: summary

3D hull summary

2D 3D

Naive O(n3) O(n4)

Gift wrapping O(nh) O(n x F)

Graham scan O(n lg n) does not
extend to 3D

Quickhull O(n lg n), O(n2) does not
extend to 3D

Incremental O(n lg n) O(n2)

Divide-and-
conquer O(n lg n) O(n lg n)

3d hull: Summary

• Of all algorithms that extend to 3D, divide-and-conquer is the only

one that achieves optimal

• But, difficult to implement

• The slower algorithms (gift wrapping, incremental) preferred in

practice

O(n lg n)

Convex hull in higher dimensions

• Surprisingly, have many applications

• e.g. computing triangulations for points in 3D can be
constructed from convex hulls in 4D

• Size of d-hull:

• In 4D: size is

• algorithm not possible

• algorithms known

Ω(n⌊d/2⌋)

Ω(n2)
O(n lg n)

O(n2)

