
3D convex hulls

Computational Geometry [csci 3250]

Laura Toma


Bowdoin College



2D 3D

polygon polyhedron
flat, plane, two-dimensional closed shape 

bounded by line segments A three-dimensional shape with flat polygonal faces





A polyhedron is a  region of space whose boundary consists of vertices, edges 
and (flat) faces, such that: 


• Faces intersect properly


• two faces are either disjoint;  or 


• have a single vertex in common; or


• have two vertices and the edge between them in common



A polyhedron is a  region of space whose boundary consists of vertices, edges 
and (flat) faces, such that: 


• Faces intersect properly


• The local topology must be proper (a neighborhood of every point must 
be homeomorphic with an open disk)

https://plus.maths.org/content/eulers-polyhedron-formula
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Proper topology:  The link of any vertex be is a simple, closet polygonal path.
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genus=1

A polyhedron is a  region of space whose boundary consists of vertices, edges 
and (flat) faces, such that: 


• Faces intersect properly


• The local topology must be proper


• Also the global topology must be proper: surface is connected, closed and 
bounded. 


• Holes are allowed, as long as they don’t disconnect 


• The nb of holes is called the genus of the surface 

genus=0



Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.  

convex non-convex



Convexity

convex non-convex

A polyhedron P is convex if for any p, q in P, the segment pq lies entirely in P.  



Convex polygons: All angles in a convex polygon are   .  
(necessary and sufficient)

≤ π

convex non-convex

reflex





Angle between two planes (α, β, green) in a third plane (pink) which cuts the line of 
intersection at right angles

A dihedral angle is the angle between two intersecting planes. 





Convex polyhedra

• All dihedral angles are 
 (Necessary and sufficient.)  

• Sum of angles around a vertex is  
(Necessary but not sufficient).  

≤ π

≤ 2π



Euler’s formula 

• Euler noticed a remarkable regularity in the number of vertices, 
edges and faces of a convex polyhedron of genus=0.

• Euler’s formula:  V - E + F = 2

• Proof idea: 


• flatten the polygon to a plane


• prove the formula for a tree


• prove for any planar graph by induction on E



O(n) edges and faces

• Consider a polyhedron  with  vertices

• Triangulate  its faces. This maximizes E and F. 

• We have that: 

•

•

• and from here it follows that  and 

• Result: The number of vertices, edges and faces in a polyhedron are linearly 
related. 

• We’ll say that a polyhedron with  vertices has  edges and  faces

V = n

V − E + F = 2
3F = 2E

E = 3V − 6 = O(n) F = 2V − 4 = O(n)

n O(n) O(n)



digression start



• A regular polygon has equal 
sides and angles

Regular polygons in 2D



Regular polyhedra  in 3D

• Regular polyhedra: 

• faces are congruent regular polygons

• the number of faces incident to each vertex is the same (and equal angles)

Surprisingly, there exist only 5 regular polytops









digression end



Convex Hulls

The problem:  Given a set P of points, compute their convex hull

2D 3D



Convex Hulls

3D convex hull = smallest convex polyhedron that 
contains P

2D convex hull = smallest convex polygon 
(polytope) that contains P





• 3d hull consists of all extreme faces, edges and vertices


• All internal angles between faces are < 180


• Walking counterclockwise—> left turns


• Points on CH are sorted in radial order wrt a point inside 

Properties of 3d hulls



3D

Faces, edges, vertices on the hull are extreme.

2D



Naive 3d hull



• For every triplet of points : 


• check if face is extreme 


• if True, add  to the list of hull faces 

(pi, pj, pk)

(pi, pj, pk)

3d hull: Naive algorithm

// return True if all points  are on the same side of face (a,b,c)

face_is_extreme(point3d a, b, c,  vector<point3d> points)

• face_is_extreme() runs in 


• Naive() runs in 

O(n)
O(n4)



2 signedArea(a,b,c) = det
a.x    a.y   1

b.x    b.y   1

c.x    c.y   1

c

a

b

negative area

(c right/in front of ab)

positive area

(c left/behind ab)

c

2D



2 signedArea(a,b,c) = det
a.x    a.y   1

b.x    b.y   1

c.x    c.y   1

c

a

b

negative area
(c right/in front of ab)

positive area
(c left/behind ab)

c

2D

6 signedVolume(a,b,c,d) = det
a.x    a.y    a.z     1

b.x    b.y    b.z    1

c.x    c.y    c.z     1

d.x    d.y    d.z    1

3D

a

b

c
d

negative volume
(d in front of face)

positive volume
(p behind face)



• The convention is that all faces of a polyhedron are oriented so that their 
normals determined by the right-hand rule point towards the outside. 

p

a

b

c

negative volume

(p in front of face)

positive volume

(p behind face)

p

p

a

b

c

positive volume

(p behind face)

negative volume

(p in front of face)

p



Gift wrapping



Gift wrapping in 3D

• YouTube 

• Video of CH in 3D   (by Lucas Benevides)

https://www.youtube.com/watch?v=4dBHgu9zNFg


• First face: find a face guaranteed to be on the CH 
• REPEAT 

• find an edge  of a face  that’s on the CH, and such that the face on the 
other side of  has not been found. 

• for all remaining points , find the angle of  with 

• find point  with the max angle; add face  to CH

e f
e

pi (e, pi) f
pi (e, pi)

Gift wrapping

• This runs in time   where F is the number of faces on CHO(n ⋅ F)

O(n)

O(n)



Gift wrapping

• How to find a first face? 

• How to keep track of the boundary of the hull (the edges that have only one 

face discovered)?

• How to keep track of the hull?   Ideally we would need to store the connectivity 

(what faces are adjacent, for an edge which faces its adjacent to, etc)

• How to find the angle between two faces, and the face with largest angle? 

• First face: find a face guaranteed to be on the CH 
• REPEAT 

• find an edge  of a face  that’s on the CH, and such that the face on the 
other side of  has not been found. 

• for all remaining points , find the angle of  with 

• find point  with the max angle; add face  to CH

e f
e

pi (e, pi) f
pi (e, pi)



3D: Given a face on the hull, find an adjacent face 

It is the face with largest angle. 

Put differently, it is the front-most face looking from e.



Given an edge e on the convex hull:
Next point p maximizes the angle with e.
Put differently, b is to the right of all points q.

rightmost

q

b

p

2D: Given an edge on the hull, find an adjacent vertex 

e



• rightmost = p[0]

• for (i = 0; i < points.size(); i++)


• if p[i]==b continue; 

• if rightOf(b, rightmost, points[i]):  rightmost=points[i]

2D: Given an edge on the hull, find an adjacent vertex 

rightmost

p[i]

b



• frontmost = p[0]
• for (i = 0; i < points.size(); i++)

• if p[i]== a or p[i]==b:  continue; 
• if inFront(a, b, frontmost, points[i]):  frontmost=points[i]

3D: Given a face on the hull, find an adjacent face 

rightmost/frontmost 
face

e

a

b

p[i]



• Find an extreme point  (e.g. max x-coord)  p = (p.x, p.y. p.z)
• Temporarily create a (fake) point q = (p.x, p.y+1, p.z) 
• Iterate through remaining points and find the front-most point r with respect 

to (p, q)
• => (p,q,r) is an extreme face, so point r  is guaranteed to be on the hull 
• => edge (p,r) is on the hull 
• Iterate through the remaining points, and find the vertex s  that is front-most 

with respect to (p, r)
• => face (p, r, s) is a face on the hull 

How to find the first face?

IDEA 1



• Find a point  on 3d-hull: ind an extreme point, say point with max x-
coord. Call this . 

• Find an edge on the 3d-hull: Project all points on the xy-plane (ignore 
their z-coord), and imagine computing the 2D-convex hull of the 
projection. These edges will be on the 3D-hull.  We only need one edge, 
and to find it we can 2d-gift-wrap  around   to find the point  
that is right-most when looking from . Thus edge  is 
on the 3d-hull.

• Find a face on the 3d-hull:  find a point, call it ,  so that third is right 
of all faces  for all other points p. 

first

first second
first ( first, second)

third
( first, second, p)

How to find the first face?

IDEA 2



First point



First edge 



First face 



Gift wrapping

• How to keep track of the hull?   
• How to keep track of the boundary of the hull?

• First face: find a face guaranteed to be on the CH 
• REPEAT 

• find an edge  of a face  that’s on the CH, and such that the face on 
the other side of  has not been found. 

• for all remaining points , find the angle of  with 

• find point  with the minimal angle; add face  to CH

e f
e

pi (e, pi) f
pi (e, pi)





• Note: edges inside the hull, they have two adjacent faces. Edges on the boundary, 
they have only one adjacent face



• The hull:    

• vector<triangle3d> hull   (Ideally  a triangle has pointers to all adjacent faces)


• Boundary of the hull: 

• a queue   


• Edges that are done: 

• need to search (is an edge e done?), and to update (mark edge e as done)

• First face: find a face guaranteed to be on the CH 

•

•

• REPEAT 

• Remove an edge  from  and mark is as done.

• Check if  is done, and if so, continue 

• Find a vertex   so that for all other points ,  point  is to the right of face 

• Add face  to , and add the new edges  to 

Hull = {}
Bnd = {}

e Bnd
e

p pi p (e, pi)
(e, p) Hull Bnd



Incremental



Incremental 3d hull

• initialize hull  H of 

• for i= 5 to n


• //invariant: H represents the CH of 


• add  to H and update H to represent the  CH of 

{p1, p2, p3, p4}

p1, p2, . . . , pi−1

pi
p1, p2, . . . , pi

2D 3D



Incremental 3d hull

3D

Imagine standing at p and looking towards the hull 


The faces that are visible are precisely those that need to be discarded


The edges on the border of the visible region become the basis of the cone 

p



• The convention is that all faces of a polyhedron are oriented so that their 
normals determined by the right-hand rule point towards the outside. 

p

a

b

c

negative volume

(p in front of face)

positive volume

(p behind face)

p

abc visible from pabc not visible from p

//return True if face abc is visible from point p 
is_visible(a, b, c, p):    

return signedVolume(a,b,c,p) < 0



Incremental 3d hull

• (sort points lexicographically)


• initialize  of  


• for each remaining point :


• for each face  of H:  check if  is visible from 

• find border edges 

• for each border edge e construct a face  and add it  to 


• for each visible face : delete  from 

H p1, p2, p3, p4

p
f f p

(e, p) H
f f H

O(n)
O(n)
O(n)
O(n)

• Incremental 3d-hull runs in time 
• RIC: Randomly permute the vertices and then process them in that order, 

while maintaining a “conflict” graph to speed up finding faces that are 
visible and need to be deleted. Runs in 

O(n2)

O(n lg n)



3D hull  via divide & conquer



3d hull via divide & conquer

• divide points in two halves P1 and P2

• recursively find CH(P1) and CH(P2)

• merge 

Result: Merging can be done in O(n) time ==> 3d-hull via divide-and-

conquer runs in O( n lg n) time.



Merging



Merging

The merged hull will add a “band” of faces between A and B

A
B



• Imagine rotating the plane around ab, until it touches A and B

Let   be a plane touching A in a and B in bπ

Rotate   around abπ



Rotate   around abπ

one of these vertices

• Claim:   When we rotate  around ab, the first vertex hit  is a vertex c 

adjacent to a or b and vertex c has the smallest angle among all 

neighbors of a,b

π



• Once  hits c, a triangular face of the merged hull has been found π

Let   be a plane touching A in a and B in bπ

Rotate   around abπ

c

a

b



1.  Find a common tangent ab 


Merge

a

b



1.  Find a common tangent ab


2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab). 


Merge

a

b
c



1.  Find a common tangent ab 


2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab). 


3.  Repeat from edge ac. 


Merge

a

b
c



Merge

a

b
c

d

1.  Find a common tangent ab 


2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab). 


3.  Repeat from edge ac. 




Merge

a

b
c

d
e

1.  Find a common tangent ab 


2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab). 


3.  Repeat from edge ac. 




Merge

a

b
c

d
e

1.  Find a common tangent ab 


2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab). 
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Merge

1.  Find a common tangent ab 


2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab). 


3.  Repeat from edge ac. 


4.  Delete hidden faces 




The hidden faces

• Find the edges on the “boundary” of the cylinder 

• BFS or DFS faces “towards” the cylinder 

• All faces reached are inside 



3d hull: summary



3D hull summary

2D 3D

Naive O(n3) O(n4)

Gift wrapping O(nh) O(n x F)

Graham scan O(n lg n) does not 
extend to 3D

Quickhull O(n lg n), O(n2) does not 
extend to 3D

Incremental O(n lg n) O(n2)

Divide-and-
conquer O(n lg n) O(n lg n)



3d hull: Summary

• Of all algorithms that extend to 3D, divide-and-conquer is the only 

one that achieves optimal  


• But, difficult to implement 


• The slower algorithms (gift wrapping, incremental) preferred in 

practice 

O(n lg n)



Convex hull in higher dimensions 

• Surprisingly, have many applications 


• e.g. computing triangulations for points in 3D can be 
constructed from convex hulls in 4D


• Size of d-hull: 


• In 4D:    size is   


•   algorithm not  possible 


•   algorithms known 

Ω(n⌊d/2⌋)

Ω(n2)
O(n lg n)

O(n2)


