3D convex hulls

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

2D 3D

Y
¥ &P
h
A ¢ £

polygon polyhedron

flat, plane, two-dimensional closed shape

bounded by line segments A three-dimensional shape with flat polygonal faces

\I
\ -
—_— ! l

Palyhedron @

A polyhedron is a region of space whose boundary consists of vertices, edges
and (flat) faces, such that:

» Faces intersect properly
e two faces are either disjoint; or
e have a single vertex in common; or

e have two vertices and the edge between them in common

A polyhedron is a region of space whose boundary consists of vertices, edges
and (flat) faces, such that:

» Faces intersect properly

* The local topology must be proper

<

//-‘

Figure 4: These objects are not polyhedra because they are made up of two separate parts
meeting only in an edge (on the left) or a vertex (on the right).

https://plus.maths.org/content/eulers-polyhedron-formula

Proper topology: The link of any vertex be is a simple, closet polygonal path.

Proper topology: The link of any vertex be is a simple, closet polygonal path.

A EEEEEEREN

Proper topology: The link of any vertex be is a simple, closet polygonal path.

Proper topology: The link of any vertex be is a simple, closet polygonal path.

Figure 4: These objects are not polyhedra because they are made up of two separate parts
meeting only in an edge (on the left) or a vertex (on the right).

Proper topology: The link of any vertex be is a simple, closet polygonal path.

Figure 4: These objects are not polyhedra because they are made up of two separate parts
meeting only in an edge (on the left) or a vertex (on the right).

A polyhedron is a region of space whose boundary consists of vertices, edges
and (flat) faces, such that:

e Faces intersect properly
e The local topology must be proper

« Also the global topology must be proper: surface is connected, closed and
bounded.

* Holes are allowed, as long as they don't disconnect

* The nb of holes is called the genus of the surface

genus=1

Convexity

A polygon P is convex if for any p, g in P, the segment pq lies entirely in P.

convex NOoN-Convex

Convexity

A polyhedron P is convex if for any p, g in P, the segment pq lies entirely in P.

convex NOoN-convex

Convex polygons: All angles in a convex polygon are < .

(necessary and sufficient)

convex NOoN-CoNvex

Definition:

Given an edge on a polyhedron, the
dihedral angle of the edge is the internal
angle between the two adjacent faces.

A dihedral angle is the angle between two intersecting planes.

Angle between two planes (a, B, green) in a third plane (pink) which cuts the line of
intersection at right angles

Definition:

Given a vertex on a polyhedron, the
deficit angle at the vertex is 2m minus
the sum of angles around the vertex.

= /2

Convex polyhedra

. All dihedral angles are < «
(Necessary and sufficient.)

- Sum of angles around a vertex is < 27
(Necessary but not sufficient).

Euler’s formula

- Euler noticed a remarkable regularity in the number of vertices,
edges and faces of a convex polyhedron of genus=0.

- Euler’s formula: V-E+F=2

* Proof idea:
e flatten the polygon to a plane
e prove the formula for a tree

e prove for any planar graph by induction on E

O(n) edges and faces

. Consider a polyhedron with V = n vertices

- Triangulate its faces. This maximizes E and F.

- We have that:

- V-E+F=2
. 3F =2F
. and from here it follows that E = 3V — 6 = O(n) and F = 2V — 4 = O(n)

- Result: The number of vertices, edges and faces in a polyhedron are linearly
related.

. We’'ll say that a polyhedron with n vertices has O(n) edges and O(n) faces

digression start

Set of convex regular n-gons

Regular polygons in 2D

A

* A regular polygon has equal
sides and angles

"}'/ o S
Y
°4 Q @
Rom

N 9

LN

Regular polyhedra in 3D WikapEDIA
e Regular polyhedra:

» faces are congruent regular polygons

« the number of faces incident to each vertex is the same (and equal angles)

Surprisingly, there exist only 5 regular polytops

Simplest Reason: Angles at a Vertex

The simplest reason there are only 5 Platonic Solids is this:

At each vertex at least 3 faces meet (maybe more).

When we add up the internal angles that meet at a vertex,
it must be less than 360 degrees.

Because at 360° the shape flattens out!

A regular triangle has internal angles of 60°, so we can have:
e 3 triangles (3x60°=180°) meet
e 4 triangles (4x60°=240°) meet
e or 5 triangles (5x60°=300°) meet

A square has internal angles of 90°, so there is only:

e 3 squares (3x90°=270°) meet

A regular pentagon has internal angles of 108°, so there is only:

e 3 pentagons (3x108°=324°) meet

A regular hexagon has internal angles of 120°, but 3x120°=360° which won't work
because at 360° the shape flattens out.

(f o b\

o o8
Na

WIKIPEDIA

The Free Encyclopedia

The five Platonic solids

The Tetrahedron The Cube The Octahedron The Dodecahedron

The Icosahedron

The five regular solids discovered by the Ancient Greek mathematicians are:

The Tetrahedron: 4 vertices b edges 4 faces each with 3 sides
The Cube: o vertices 12 edges 6 faces each with 4 sides
The Octahedron: b vertices 12 edges o faces each with 3 sides
The Dodecahedron: 20 vertices 30 edges 12 faces each with 35 sides
The Icosahedron: 12 vertices 30 edges 20 faces each with 3 sides

The solids are regular because the same number of sides meet at the same angles at each vertex
and identical polygons meet at the same angles at each edge.

These five are the only possible regular polyhedra.

digression end

Convex Hulls

The problem: Given a set P of points, compute their COﬂ\ieX hull

2D ’

Convex Hulls

’;
|
2D convex hull = smallest convex polygon 3D convex hull = sm t coAvex polyhedron that

(polytope) that contains P contains P

= A \‘
e
o
ZaNeV2.

2\ \i\

A\ Vm\, 1

Properties of 3d hulls

e 3d hull consists of all extreme faces, edges and vertices

* All internal angles between faces are < 180

Faces, edges, vertices on the hull are extreme.

2D 3D

Naive 3d hull

3d hull: Naive algorithm
. For every triplet of points (p;, pj, Py):

e check if face is extreme

. if True, add (p;, p;, py) to the list of hull faces

// return True if all points are on the same side of face (a,b,c)

face_is_extreme(point3d a, b, ¢, vector<point3d> points)

o face_is_extreme() runs in O(n)

e Naive() runs in O(n*)

2D positive area ¢
(c left/behind ab)

/b
ax ay 1

2 signedArea(a,b,c) = detjb.x b.y 3 negative area
cx cy 1 C (¢ right/in front of ab)

2D positive area C
(c left/behind ab)

/b
ax ay 1

2 signedArea(a,b,c) = detjb.x b.y 3 negative area
cx cy 1 C (¢ right/in front of ab)

3 D positive volume
(p behind face)

C

ax ay az
6 signedVolume(a,b,c,d) = detb.x b.y b.z
CX CYy CZ
dx dy dz

— L —k A

negative volume
(d in front of face)

Do

positive volume
(p behind face)

Pe

negative volume
(p in front of face)

a

O

Mo

negative volume
(p in front of face)

Pe

positive volume
(p behind face)

* The convention is that all faces of a polyhedron are oriented so that their
normals determined by the right-hand rule point towards the outside.

Gift wrapping

Gift wrapping in 3D

 YouTube
e Video of CHin3D (by Lucas Benevides)

https://www.youtube.com/watch?v=4dBHgu9zNFg

Gift wrapping

First face: find a face guaranteed to be on the CH
REPEAT

O(n) - findanedge e of a face fthat’s on the CH, and such that the face on the
other side of e has not been found.

O(n) . for all remaining points p;, find the angle of (e, p,) with f
n
- find point p, with the max angle; add face (e, p,) to CH

This runs in time O(n - ') where F is the number of faces on CH

Gift wrapping

First face: find a face guaranteed to be on the CH
REPEAT

find an edge e of a face f that’s on the CH, and such that the face on the
other side of e has not been found.

for all remaining points p,, find the angle of (e, p,) with f
find point p; with the max angle; add face (e, p;) to CH

How to find a first face?

How to keep track of the boundary of the hull (the edges that have only one
face discovered)?

How to keep track of the hull? |deally we would need to store the connectivity
(what faces are adjacent, for an edge which faces its adjacent to, etc)

How to find the angle between two faces, and the face with largest angle?

3D: Given a face on the hull, find an adjacent face

It is the face with largest angle.
Put differently, it is the front-most face looking from e.

2D: Given an edge on the hull, find an adjacent vertex

Given an edge e on the convex hull:

Next point p maximizes the angle with e.
Put differently, b is to the right of all points g.

2D: Given an edge on the hull, find an adjacent vertex

rightmost

* rightmost = p[0]
« for (i =0;i < points.size(); i++)
 if p[i]l==b continue;

e if rightOf(b, rightmost, points|i]): rightmost=points|i]

3D: Given a face on the hull, find an adjacent face

pli] _rightmost/frontmost
o i T face

frontmost = p[0]
for (i = 0; i < points.size(); i++)
if p[i]l==a or p[i]==b: continue;

if inFront(a, b, frontmost, points[i]): frontmost=points]i]

How to find the first face?

IDEA 1

Find an extreme point (e.g. max x-coord) p = (p.x, p.y. p.2)
Temporarily create a (fake) point q = (p.x, p.y+1, p.z)

lterate through remaining points and find the front-most point r with respect
to (p, q)

=> (p,q,r) is an extreme face, so point r is guaranteed to be on the hull
=> edge (p,r) is on the hull

lterate through the remaining points, and find the vertex s that is front-most
with respect to (p, r)

=> face (p, r, S) is a face on the hull

How to find the first face?

IDEA 2

Find a point on 3d-hull: ind an extreme point, say point with max x-
coord. Call this first.

Find an edge on the 3d-hull: Project all points on the xy-plane (ignore
their z-coord), and imagine computing the 2D-convex hull of the
projection. These edges will be on the 3D-hull. We only need one edge,
and to find it we can 2d-gift-wrap around first to find the point second
that is right-most when looking from first. Thus edge (first, second) is

on the 3d-hull.

Find a face on the 3d-hull: find a point, call it third, so that third is right
of all faces (first, second, p) for all other points p.

First point

/% skokkkskskskskokokokskskskskskokokokskskskskskokokokskskskskskokokokskskskskskokokokskskskskskokokokskskekokokokokok 3k /
//return index of point with max x-coord
int find_right_most_point(vector<point3d>& points) {

if(points.size() == @) return -1;

int rightmost = 0;

for (int i=1; i< points.size(); i++){
if (points[rightmost].x < points[i].x) {
~_rightmost = i;
b |

}

return rightmost;

//return an edge on the 3d hull of points g
2dge3d find_first_edge_on_hull(vector<point3d>& points) {

int first_point = find_right_most_point(points);
printf("%15s", "first point: ");
print_point(points[first_point], first_point);
printf("\n");

//project all points onto z=0 plane and gift-wrap to find the first edge from first_poil
point2d first = {points[first_point].x, points[first_point].y};

int second_point = -1;
point2d second = {0, 0};
point2d p;

for (int i=@0; i<points.size(); i++) {

if (i==first_point) continue;
p.X = points[i]l.x; p.y= points[il.y; //current point

if ((second_point==-1) || right_strictly(first, second, p)) {
second_point = 1i;
second. X points[i].x;
Becond.y = points[il.y;

}//for

printf("%15s", "second point: ");
print_point(points[second_point], second_point);
printf("\n");

//sanity check that edge is indeed extreme
assert(is_edge_projection_extreme(first_point, second_point, points));

edge3d e = {first_point, second_point, &points[first_point], &points[second_point] };
return e;

First face

/% skekskkokskokokskskokokskkokskok sk ok sk sk skok sk sk sk sk k sk ok sk sk sk ok sk ks sk sk sk ksk sk sk sk kk sk sk sk kokkkkkkkokk 5k /
/* finds and returns a face on the hull3d x/
triangle3d find_first_face(vector<point3d>& points) {

}

edge3d e = find_first_edge_on_hull(points);
int first_point = e.ia;
int second_point = e.ib;

//first_point and second_point are both on the hull. Find the third point similarly.
//int third_point = pivot_around_edge(points[first_point], points[second_point], points)
int third_point = pivot_around_edge(first_point, second_point, points);

printf("%15s", "third point: ");

print_point(points[third_point], third_point);
printf("\n");

triangle3d t;

t.a = &points[first_point];
t.b = &points[second_point];
t.c = &points[third_point];
return t;

Gift wrapping

First face: find a face guaranteed to be on the CH
REPEAT

find an edge e of a face f that’s on the CH, and such that the face on
the other side of e has not been found.

for all remaining points p;, find the angle of (e, p;) with f
find point p; with the minimal angle; add face (e, p;) to CH

How to keep track of the hull?

How to keep track of the boundary of the hull?

The hull:

* vector<triangle3d> hull (ldeally a triangle has pointers to all adjacent faces)
Boundary of the hull:

* aqueue
Edges that are done:

 need to search (is an edge e done?), and to update (mark edge e as done)

First face: find a face guaranteed to be on the CH

Hull = {)
Bnd = {)
REPEAT

Remove an edge e from Bnd and mark is as done.
Check if e is done, and if so, continue
Find a vertex p so that for all other points p;, point p is to the right of face (e, p,)

Add face (e, p) to Hull, and add the new edges to Bnd

Incremental

Incremental 3d hull

initialize hull H of {py, Py, P3» Ps}
e fori=51ton

e /finvariant: H represents the CH of py, py, . .., P;_1

 add p; to H and update H to represent the CH of
P1:P2s - -5 D;

Incremental 3d hull

Imagine standing at p and looking towards the hull
The faces that are visible are precisely those that need to be discarded

The edges on the border of the visible region become the basis of the cone

* The convention is that all faces of a polyhedron are oriented so that their
normals determined by the right-hand rule point towards the outside.

C
Pe
Pe
- o
positive volume negative volume
(p behind face) (p in front of face)
abc not visible from p abc visible from p

//return True if face abc is visible from point p
is_visible(a, b, c, p):
return signedVolume(a,b,c,p) <0

Incremental 3d hull

* (sort points lexicographically)

- initialize H of py, Py, D3, P4
« for each remaining point p:
O(n) « for each face fof H: check if fis visible from p
O(n) « find border edges
O(n) « for each border edge e construct a face (e,p) and add it to H

O(n) * for each visible face f: delete f from H

Incremental 3d-hull runs in time O(n?)

RIC: Randomly permute the vertices and then process them in that order,
while maintaining a “conflict” graph to speed up finding faces that are
visible and need to be deleted. Runs in O(nlgn)

3D hull via divide & conquer

3d hull via divide & conqguer

e divide points in two halves P1 and P2
e recursively find CH(P1) and CH(P2)

* merge

Result: Merging can be done in O(n) time ==> 3d-hull via divide-and-

conquer runs in O(n Ig n) time.

Merging

Merging

The merged hull will add a “band” of faces between A and B

* Imagine rotating the plane around ab, until it touches A and B

Rotate & around ab

Let # be a plane touching Ainaand Binb

« Claim: When we rotate & around ab, the first vertex hit is a vertex c
adjacent to a or b and vertex ¢ has the smallest angle among all

neighbors of a,b

one of these vertices

Rotate & around ab

« Once 7 hits ¢, a triangular face of the merged hull has been found

Merge

1. Find a common tangent ab

Merge

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

Merge

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

Merge

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

Merge

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

Merge

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

Merge

1. Find a common tangent ab

2. Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt
the plane through ab).

3. Repeat from edge ac.

4. Delete hidden faces

The hidden faces

(b)

* Find the edges on the “boundary” of the cylinder
« BFS or DFS faces “towards” the cylinder

o All faces reached are inside

3d hull: summary

3D hull summary

Naive O(n3) O(n4)
Gift wrapping O(nh) O(n . F)
Graham scan O(nlg n) does not

extend to 3D

| does not
O(n Ig n), O(n2
Quickhull (nlgn), O2) e 1o 3D

Incremental O(nlg n) O(n2)

Divide-and-
-~ O(n Ig n) O(nlg n)

3d hull: Summary

 Of all algorithms that extend to 3D, divide-and-conquer is the only

one that achieves optimal O(nlgn)

e But, difficult to implement

* The slower algorithms (gift wrapping, incremental) preferred in

practice

Convex hull in higher dimensions

e Surprisingly, have many applications

* £.9. computing triangulations for points in 3D can be
constructed from convex hulls in 4D

. Size of d-hull: Q(n92])
.« In4D: sizeis Qn?)
« O(nlgn) algorithm not possible

. O(n?) algorithms known

