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• Last time


• Brute force 


• Gift wrapping 


• Graham scan 

• Quickhull

• Today


• Andrew’s monotone chain


• Lower bound 


• Other algorithms: 


• Incremental  hull


• Divide-and -conquer hull

Algorithms for computing the convex hull



//return true if p is inside (or on) abc, and false otherwise

bool isInside (p, a, b, c)

Classwork: Given a point p and a triangle a, b, c

a
b

p



Andrew’s Monotone Chain Algorithm 

• Alternative to Graham’s scan, faster in practice
• Idea: Find upper hull and lower hulls separately 


a
b



Andrew’s Monotone Chain Algorithm

a
b

P1

P2

• Alternative to Graham’s scan, faster in practice
• Idea: Find upper hull and lower hulls separately 




• Order these points in  (x,y) lexicographic order

P1
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• Order these points in  (x,y) order (first by x, second by y)

called: lexicographic order



Finding the upper hull of P1

• Traverse points in (x,y) order and build the upper hull, like in Graham scan
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Finding the upper hull of P1

• Traverse points in (x,y) order and build the upper hull, like in Graham scan
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Finding the upper hull of P1
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Finding the upper hull of P1
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Finding the upper hull of P1
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Finding the upper hull of P1
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Finding the upper hull of P1

a

b

c

d

e

f

g

h



a

b

c

d

e

f

Finding the upper hull of P1
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Finding the upper hull of P1
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Finding the upper hull of P1
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and so on..

Finding the upper hull of P1



Andrew’s Monotone Chain Algorithm

• Alternative to Graham’s scan 


• Same running time 


• Sorting by (x,y) is faster (in practice) than sorting radially



Convex hull:  summary 

Can we do better?

Naive

Gift wrapping

Quickhull

Graham scan 

Andrew monotone 
chain

O(h ⋅ n)

O(n3)

O(n2)

O(n lg n)

O(n lg n)



Lower bound



What is a lower bound? 

• Given an algorithm A, its worst-case running time is the largest running time on 
any input of size n

TA(n) = max |P|=n { T(n) | T(n) is the running time of A on input P}

• A lower bound  for a problem is a lower bound on the worst-case running 

time of any algorithm that solves that problem

L(n)

TA(n) = Ω(L(n)), for all algorithms A that solve the problem 

• We could say that Convex hull has a lower bound  (trivial).  We could also say that , also trivial. 


• We want larger lower bounds (and lower upper bounds!)


• When the best-known worst-case   of an algorithm, matches the best-known lower bound for that problem, the problem is 
considered “solved”. An algorithm that matches the lower bound is optimal!

L(n) = Ω(1) L(n) = Ω(n)

T(n)



Proving lower bounds

• We can prove lower bounds directly


• Theorem: Any sorting algorithm that uses only comparisons uses at 
least   comparisons in the worst case. 


• Proof: We saw this in Algorithms..


• Or,  via reduction from a problem known to have a lower bound


• aka:  

Ω(n lg n)

n lg n < A and A < B ⟹ n lg n < B

• Lower bounds depend on the machine model. 


• The standard model is the decision tree (comparison) model



• We know that     Sorting


• If we could show that ConvexHull is at least as hard as Sorting

Ω(n lg n) ≤

Lower bounds by reduction 

Sorting Convex hull≤

This would imply that  ConvexHull is Ω(n lg n)



• We‘ll show that we can use ConvexHull to Sort:   

•  Let  P be a set of values that need to be sorted.  We’ll show that there 
exists some instance of the CH problem that sorts P, and we can build this 
instance in O(n) time

How do we show                                                ? Sorting Convex hull≤

Running time of sortViaCH:   O(n) + O(findConvexHull))

sortViaCH (array P of n real values)
• create a set  P’ of points  from P
• findConvexHull(P’)
• use the convex hull to infer sorted order of P 

O(n)

O(n)

• If we could find the CH faster than  in the worst 
case, we could use it to sort faster than  in the 
worst case, which we know is impossible!

Θ(n lg n)
Θ(n lg n)



Sorting via ConvexHull

We want to find an instance of a convex hull 
problem that sorts P. 

• Let P: array of real values x1, x2, …xn. to sort 



y = x2

Sorting via ConvexHull

pi = (xi, xi2)

xi xi

• Let P’: set points { pi = (xi, xi2)} • Let P: array of real values x1, x2, …xn. to sort 



• Let P: set of values x1, x2, …xn. to sort 

x2

Sorting via ConvexHull

pi = (xi, xi2)

• Let P’: set points { pi = (xi, xi2)} 



• Let P: set of values x1, x2, …xn. to sort 

x2

Sorting via ConvexHull

• Run CH(P’) to find their convex hull

• Let P’: set points { pi = (xi, xi2)} 

x2

pi = (xi, xi2)



• Let P: set of values x1, x2, …xn. to sort 

x2

Sorting via ConvexHull

• Run CH(P’) to find their convex hull

• Let P’: set points { pi = (xi, xi2)} 

x2

pi = (xi, xi2)

• They fall on a parabola, so every 
point is on the hull



• Let P: set of values x1, x2, …xn. to sort 

x2

Sorting via ConvexHull

• Run CH(P’) to find their convex hull

• Let P’: set points { pi = (xi, xi2)} 

x2

pi = (xi, xi2)

• Find the lowest point on the hull

1



• Let P: set of values x1, x2, …xn. to sort 

x2

Sorting via ConvexHull

• Run CH(P’) to find their convex hull

• Let P’: set points { pi = (xi, xi2)} 

x2

pi = (xi, xi2)

1
2

3
4

5

• Find the lowest point on the hull
• walk in ccw order



• Let P: set of values x1, x2, …xn. to sort 

x2

Sorting via ConvexHull

• Run CH(P’) to find their convex hull

• Let P’: set points { pi = (xi, xi2)} 

x2

pi = (xi, xi2)

1 2 3 4 5

• Find the lowest point on the hull
• walk in ccw order

This is sorted order!

1
2

3
4

5



• Input: set of points x1, x2, …xn

• Create a set of 2D points (xi, xi2). 

• Run the CH algorithm to construct their convex 

hull. 

• Find the lowest point on the hull, and walk from in 

ccw order.   This is sorted order!

Sorting via ConvexHull

Analysis:  We can sort in O(CH(n)) + O(n)  

• CH is an upper bound for sorting, or  Sorting  ConvexHull≤

• If we could find the CH faster than , we could use it to sort faster than 
 , which is impossible!

Θ(n lg n)
Θ(n lg n)

Sorting Convex hull≤



Summary

sorting is   Ω(n lg n)

reduces to

(or: solves via) 

O(n)
sorting convex hull

CH must be    Ω(n lg n)



• What we actually proved is that


• Any CH algorithm that produces the boundary in order must take 
 in the worst case.


• If we did not want the boundary in order, can the CH be constructed faster? 


• It was an open problem for a while 


• Finally, it was established (quite recently) that a convex hull algorithm, 
even if it does not produce the boundary in order, still needs  
in the worst case

Ω(n lg n)

Ω(n lg n)

Sorting reduces to CH



Convex hull:  summary 

Can we do better than  worst case? Θ(n lg n)

Naive

Gift wrapping

Quickhull

Graham scan 

Andrew monotone 
chain

O(h ⋅ n)

O(n3)

O(n2)

O(n lg n)

O(n lg n)

No 

• Yes, Graham scan is the ultimate CH algorithm but…

• not output sensitive 

• does not extend to 3D


• The (re)search continues 



An incremental algorithm for CH



Incremental algorithms

• Idea:  Traverse the points one at a time and solve the problem for the 
points seen so far  


• Incremental Algorithm 

• initialize solution S 

• for i=1 to n


• //S represents solution of p1…….pi-1

• update S to represent solution of  p1…..pi-1 pi



Incremental algo for CH

p1

p2

p3

p4

p6
p5

p7

p8

p15

• CH = {}

• for i=1 to n


• //CH represents the CH of p1..pi-1

• update CH to represent the  CH of p1..pi
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Incremental algo for CH
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Incremental algo for CH
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Incremental algo for CH
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Incremental algo for CH
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Incremental algo for CH
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Incremental algo for CH
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• CH = {}

• for i=1 to n


• //CH represents the CH of p1..pi-1

• update CH to represent the  CH of p1..pi

and so on



Incremental algo for CH
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• CH = {}

• for i=1 to n


• //CH represents the CH of p1..pi-1

• update CH to represent the  CH of p1..pi



Incremental algo for CH

• The basic operation is adding a point to a convex polygon

• CASE 1: p is in polygon 

• CASE 2: p outside polygon 

• CH = {}

• for i=1 to n


• //CH represents the CH of p1..pi-1

• update CH to represent the  CH of p1..pi



Incremental algo for CH

• Issues to solve 

• What’s a good representation for a (convex) polygon?

• We need a point-in-convex-polygon test 

• How to handle CASE 2 ?



Representing a polygon

A polygon is represented as a list of vertices in boundary order. 

(the convention is counter-clockwise order)

typedef struct _polygon{


int k; //number of vertices


Point* vertices; //the vertices, ccw in boundary order


} Polygon;


or


Vector<Point>            //note: the vertices, ccw in boundary order 



Point in convex polygon

//return TRUE iff p on the boundary or inside H; H is convex a polygon 


bool point_in_polygon(point p, polygon H)


p

What has to be true in order for p to be inside?



Point in convex polygon

//return TRUE iff p on the boundary or inside H; H is convex a polygon 


bool point_in_convex_polygon(point p, polygon H)


//p is inside if and only if it is on or to the left of all edges, oriented ccw


//note:  this is NOT true for a non-convex polygon — can you show a


//counter-example?

p

Analysis:  O(k) where k is the size of the polygon 



Case 2: 

p

pi

pj

We want to find pi and pj

Hint:   Check the orientation of p wrt the edges of the polygon. 



Case 2: 

p

pj

pi

R

R

RL

L

L
L

We want to find pi and pj

Hint:   Check the orientation of p wrt the edges of the polygon. 



Finding tangent points 

Input: point p outside H


 polygon H = [p0, p1,…, pk-1] convex


• for i=0 to k-1 do 

• prev = ((i == 0)? k-1: i-1); 

• next = (i==k-1)? 0; i+1); 

• if XOR (p is left-or-on (pprev, pi), p is left-or-on(pi, pnext))


• then: pi is a tangent point

pi

R

R

RL

L

L
L

pj



Putting it all together



Incremental CH

• H = [p1, p2, p3]


• for i=4 to n do 


• //add pi to H


• if point_in_polygon(pi, H)


• //do nothing 


• else 


• find  the tangent point where orientation changes from L to R


• find  the tangent point where orientation changes from R to L


• delete the part from  to  in H (note:  not necessarily before  in the vertex array of H. view H as wrapping around)

pk

pj

pk pj pk pj



• H = [p1, p2, p3]


• for i=4 to n do 


• //add pi to H


• if point_in_polygon(pi, H)


• //do nothing 


• else 


• find  the tangent point where orientation changes from L to R


• find  the tangent point where orientation changes from R to L


• delete the part from  to  in H (note:  not necessarily before  in the vertex array of H. view H as wrapping around)

pk

pj

pk pj pk pj

Incremental CH

Analysis:  ∑
i

O(i) = Θ(n2)

O(i)

O(i)



• Pre-sort the points by their x-coordinates and add them in this order.  Then


• point  is to the right of , so it will be outside 


• No need to check if  is inside the CH!

pi pi−1 CH(p1, p2, . . . , pi−1)
pi

Incremental CH, improved

• pre-sort the points by their x-coordinates. Initialize  H = [p1, p2, p3]


• for i=4 to n do 


• find  the tangent point where orientation changes from L to R


• find  the tangent point where orientation changes from R to L


• delete the part from  to  in H

pk

pj

pk pj

But, we can finesse finding the tangent to run in  total, overall all  points O(n) n

Analysis:  however, this is still  ∑
i

O(i) = Θ(n2)

O(i)



Finding the UPPER tangent point of  to the hull   of 

• find vertex  on 


• 


• while point  lies to the right of   :   


//claim:   is the upper tangent point 

pi H {p1, p2, . . . , pi−1}
pi−1 H

v = pi−1

pi (v, succ(v)) v = succ(v)
v

R

R

RL

L

L

L

pi

pi−1 Finding the upper tangent 
of   , summed over all 
iterations , takes 

pi
i O(n)

v



Theorem: Incremental CH  (in 2D) runs in   to sort the points followed by 

 to construct the convex hull. 

O(n lg n)
O(n)



A divide-and-conquer algorithm for CH



Divide-and-conquer  framework 

DC(input P)
if P is small, solve and return 
else 

//divide
divide input P into two halves, P1 and P2
//recurse 
result1 = DC(P1) 
result2 = DC(P2) 
//merge 
result=figure_out_result_for_P _from_result1_and_result2
return result

Analysis: (merge phase) T(n) = 2T(n /2) + O

• if merge phase is :                 => O(n) T(n) = 2T(n /2) + O(n) O(n lg n)



CH via divide-and-conquer 



• find vertical line that splits P in half


CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line


P1 P2

CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find CH(P1)


P1 P2

CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find CH(P1)

• recursively find CH P2

P1 P2

CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find CH(P1)

• recursively find CH P2

  //now get somehow CH(P)

P1 P2

CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find CH(P1)

• recursively find CH P2

  //now get somehow CH(P)

P1 P2

CH via divide-and-conquer 



P1 P2

Merging two hulls in linear time

• Need to find the two “tangents” (or “bridges”)

• Here it looks like the upper 
tangent is between the top 
points in P1 and P2


• Is this always true?



• Need to find the two “tangents” (or “bridges”)

Merging two hulls in linear time

•  Naive algorithm: try all segments (a,b) with a in H1 and b in H2 


      Too slow. => O(n2) merge, O(n2 lg n) CH algorithm

P1 P2

• Here it looks like the upper 
tangent is between the top 
points in P1 and P2


• Is this always true?



Not necessarily…

Is the upper tangent guaranteed to connect the top points in P1 and P2 ? 



The top-most point overall is on the CH, but not necessarily on the upper tangent 



Merging two hulls in linear time

H1 H2

• To find the upper bridge: 


• a = right most point of P1


• b = left most point of P2


• while one of succ(a) and pred(b) lies above line ab do: 


• if succ(a) lies above ab then set a = succ(a)


• else : set b = pred(b)


• return ab as the upper bridge



Finding the lower tangent 

•  Claim:  All points in H1 and H2 are to the left of ab

a

b

H1 H2



Finding the lower tangent 

•  Claim:  Points a,b are on the lower hulls of H1 and H2, respectively. 

a

b

H1 H2



•  Idea: 

• start with a = rightmost point in H1, b =  leftmost point in H2

• lower a until all H1 is left of ab

• lower b until all H2 is left of ab

• repeat 

a b

H1 H2

Finding the lower tangent 



a

b

H1 H2

•  Idea: 

• start with a = rightmost point in H1, b =  leftmost point in H2

• lower a until all H1 is left of ab

• lower b until all H2 is left of ab

• repeat 

Finding the lower tangent 



a

b

H1 H2

•  Idea: 

• start with a = rightmost point in H1, b =  leftmost point in H2

• lower a until all H1 is left of ab

• lower b until all H2 is left of ab

• repeat 

Finding the lower tangent 



b

a

H1 H2

•  Idea: 

• start with a = rightmost point in H1, b =  leftmost point in H2

• lower a until all H1 is left of ab

• lower b until all H2 is left of ab

• repeat 

Finding the lower tangent 



b

a

H1 H2

•  Idea: 

• start with a = rightmost point in H1, b =  leftmost point in H2

• lower a until all H1 is left of ab

• lower b until all H2 is left of ab

• repeat 

Finding the lower tangent 



b

a

H1 H2

•  Idea: 

• start with a = rightmost point in H1, b =  leftmost point in H2

• lower a until all H1 is left of ab

• lower b until all H2 is left of ab

• repeat 

Finding the lower tangent 



b

a

H1 H2

Claim: At any point during  the algorithm, segment ab cannot intersect the interior of 
the polygons 


 ==> a cannot move into the upper hull of P1, b cannot move into the upper hull of P2


==> The algorithm terminates


==> O(n)

(why) does this work?



• Yet another illustration of the divide-and-conquer paradigm


•  


• Extends nicely to 3D

O(n lg n)

CH via divide-and-conquer 



•  lower bound

• Gift wrapping:   

• output-size sensitive

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary dimensions; for 
many years was the primary algorithm for higher dimensions

• Graham scan, Andrew’s monotone chain: , but 

• not output-sensitive 

• does not transfer to 3d

• Quickhull:  

• Incremental CH : 

• extends to 3D

• Divide-and-conquer CH:  

• extends to 3D

Ω(n lg n)

O(h ⋅ n)

O(n lg n)

O(n2)

O(n lg n)

O(n lg n)

Convex hull in 2D: Summary



Convex hull:  summary 

Naive

Gift wrapping

Quickhull

Graham scan 

Andrew monotone 
chain

O(h ⋅ n)

O(n3)

O(n2)

O(n lg n)

O(n lg n)


