Planar Canvex Hulls (111

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Algorithms for computing the convex hull

 Today
 Andrew’s monotone chain
 Lower bound
e Other algorithms:
* Incremental hull

e Divide-and -conquer hull

Classwork: Given a point p and a triangle a, b, ¢

//return true if p is inside (or on) abc, and false otherwise

bool isInside (p, a, b, c)

Andrew’s Monotone Chain Algorithm

« Alternative to Graham’s scan, faster in practice

e |dea: Find upper hull and lower hulls separately

Andrew’s Monotone Chain Algorithm

« Alternative to Graham’s scan, faster in practice

* |dea: Find upper hull and lower hulls separately

* Order these points in (x,y) lexicographic order

called: lexicographic order

|

- Order these points in (x,y) order (first by x, second by y)

Finding the upper hull of P1

e Traverse points in (x,y) order and build the upper hull, like in Graham scan

ol
de o
N
b' ¢
e %9
B @
a C @

Finding the upper hull of P1

e Traverse points in (x,y) order and build the upper hull, like in Graham scan

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

*h

Finding the upper hull of P1

‘ I I
4
L4
L4
L4

Finding the upper hull of P1

~
~
~
~
-~
) | I

Finding the upper hull of P1

and so on..

Andrew’s Monotone Chain Algorithm

e Alternative to Graham’s scan
e Same running time

o Sorting by (x,y) is faster (in practice) than sorting radially

Convex hull: summary

Naive 0(n3)
Gift wrapping O(h - n)
Quickhull O(n?)
Graham scan O(nlgn)
""" Andrew monotone o1\
chain O(nlgn)

..

Can we do better?

Lower bound

What is a lower bound?

Given an algorithm A, its worst-case running time is the largest running time on
any input of size n

Ta(n) = max ipizn{ T(n) | T(n) is the running time of A on input P}

A lower bound L(n) for a problem is a lower bound on the worst-case running

time of any algorithm that solves that problem

T4(n) = Q(L(n)), for all algorithms A that solve the problem

« We could say that Convex hull has a lower bound L(n) = €(1) (trivial). We could also say that L(n) = €2(n), also trivial.
e We want larger lower bounds (and lower upper bounds!)

e When the best-known worst-case T'(n) of an algorithm, matches the best-known lower bound for that problem, the problem is
considered “solved”. An algorithm that matches the lower bound is optimal!

Proving lower bounds

e | ower bounds depend on the machine model.

e The standard model is the decision tree (comparison) model

¢ \We can prove lower bounds directly

e Theorem: Any sorting algorithm that uses only comparisons uses at

least 2(n1gn) comparisons in the worst case.

e Or, via reduction from a problem known to have a lower bound

eaka: nlgn < AandA < B=nlgn<B

Lower bounds by reduction

« We know that Q(nlgn) < Sorting

* |If we could show that ConvexHull is at least as hard as Sorting

Sorting < Convex hull

This would imply that ConvexHull is Q(n1g n)

How do we show Sorting < Convex hull ?

- We'll show that we can use ConvexHull to Sort:

Let P be a set of values that need to be sorted. We’ll show that there
exists some instance of the CH problem that sorts P, and we can build this
instance in O(n) time

sortViaCH (array P of n real values)

- create a set P’ of points from P < O(n)
+ findConvexHull(P’)

- use the convex hull to infer sorted order of P |« O(n)

Running time of sortViaCH: O(n) + O(findConvexHull))

o If we could find the CH faster than ®@(n 1g n) in the worst
case, we could use it to sort faster than @(n 1g n) in the
worst case, which we know is impossible!

Sorting via ConvexHull

e Let P: array of real values x1, X2, ...Xn. 10 sort

We want to find an instance of a convex hull
problem that sorts P.

Sorting via ConvexHull

e Let P: array of real values x1, X2, ...xn. to sort * Let P’: set points { pi = (Xi, X)}

y =x2

Xi Xi

Sorting via ConvexHull

e Let P: set of values x1, xo, ...Xn to sort e Let P’ set points { pi = (X, xi?)}
pi = (Xi, Xi2) o
N e
o
O
o

Sorting via ConvexHull

* Let P: set of values xi, X2, ...Xn to sort e Let P’: set points { pi = (xi, x?)}

* Run CH(P’) to find their convex hull

Sorting via ConvexHull

* Let P: set of values xi, X2, ...Xn to sort e Let P’: set points { pi = (xi, x?)}

* Run CH(P’) to find their convex hull

e They fall on a parabola, so every
4 point is on the hull

T —— T

Sorting via ConvexHull

* Let P: set of values xi, X2, ...Xn to sort e Let P’: set points { pi = (xi, x?)}

* Run CH(P’) to find their convex hull

e Find the lowest point on the hull

Sorting via ConvexHull

* Let P: set of values xi, X2, ...Xn to sort e Let P’: set points { pi = (xi, x?)}

* Run CH(P’) to find their convex hull

e Find the lowest point on the hull

e walk in ccw order

Sorting via ConvexHull

* Let P: set of values xi, X2, ...Xn to sort e Let P’: set points { pi = (xi, x?)}

* Run CH(P’) to find their convex hull

e Find the lowest point on the hull

e walk in ccw order

This is sorted order!

Sorting < Convex hull

Sorting via ConvexHull

e |nput: set of points X1, X2, ...Xn A

» Create a set of 2D points (xi, xi2).

* Run the CH algorithm to construct their convex
hull.

* Find the lowest point on the hull, and walk from in
ccw order. This is sorted order!

Analysis: We can sort in O(CH(n)) + O(n)

« CH s an upper bound for sorting, or Sorting < ConvexHull

« If we could find the CH faster than ®(n1g n), we could use it to sort faster than
®(nlgn) , which is impossible!

summary

. O(n)
sorting .~~~ .~ convex hull

reduces to
(or: solves via)

sorting is Q(nlgn) CH must be Q(nlgn)

Sorting reduces to CH

 What we actually proved is that

 Any CH algorithm that produces the boundary in order must take
Q(nlgn) in the worst case.

« |f we did not want the boundary in order, can the CH be constructed faster?

e |t was an open problem for a while

* Finally, it was established (quite recently) that a convex hull algorithm,
even if it does not produce the boundary in order, still needs L2(n1g n)

in the worst case

Convex hull: summary

Naive o)
Gift wrapping O(h - n)
Quickhull O(n?)
Graham scan O(nlgn)
""" Andrew monotone Ay te
chain Onlgn)

Can we do better than @(n lg n) worst case?

* Yes, Graham scan is the ultimate CH algorithm but...
* NOt output sensitive
e does not extend to 3D

e The (re)search continues

An incremental algorithm for CH

Incremental algorithms

* |dea: Traverse the points one at a time and solve the problem for the
points seen so far

* Incremental Algorithm
* initialize solution S
e fori=1ton
* /IS represents solution of p1....... Di-1

e update S to represent solution of pi1.....pi-1 Pi

Incremental algo for CH

+ CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

B
&
@
Ps o e
@ e
P1
&
Ps e

P2

P3

P7

P15

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

@
@
B

Ps o e
B @&
/ O

B
Ps e

P2

P3

P7

P15

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

B
&
@
Ps o e
@ @
P1
&
Ps e

Incremental algo for CH

+ CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

P1

P2

P3

P7

P15

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

P2

P7

Incremental algo for CH

« CH={}
e fori=1ton
» //CH represents the CH of p1..pi-1
» update CH to represent the CH of p1..pi

P15

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

P15

Incremental algo for CH

« CH={}
e fori=1ton
» //CH represents the CH of p1..pi-1
» update CH to represent the CH of p1..pi

P7

P15

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

P7

P15

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

P15

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

P7

P15

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

and so on

Incremental algo for CH

* CH={)
e fori=1ton

» //CH represents the CH of p1..pi-1

» update CH to represent the CH of p1..pi

Incremental algo for CH

« CH={}
e fori=1ton
» //CH represents the CH of p1..pi-1
» update CH to represent the CH of p1..pi

* The basic operation is adding a point to a convex polygon
« CASE 1: pisin polygon
« CASE 2: p outside polygon

Incremental algo for CH

* |ssues to solve
« What's a good representation for a (convex) polygon?
* We need a point-in-convex-polygon test
 How to handle CASE 2 7

Representing a polygon

A polygon is represented as a list of vertices in boundary order.

(the convention is counter-clockwise order)

typedef struct _polygon{
int k;
Point* vertices;

} Polygon;

or

Vector<Point>

Point in convex polygon

//return TRUE iff p on the boundary or inside H; H is convex a polygon
bool point_in_polygon(point p, polygon H)

What has to be true in order for p to be inside?

Point in convex polygon

//return TRUE iff p on the boundary or inside H; H is convex a polygon
bool point_in_convex_polygon(point p, polygon H)
//p is inside if and only if it is on or to the left of all edges, oriented ccw
//note: this is NOT true for a non-convex polygon — can you show a

//counter-example?

Analysis: O(k) where K is the size of the polygon

Case 2:

We want to find pi and p; p|

Hint: Check the orientation of p wrt the edges of the polygon.

Case 2:

We want to find pi and pj pI

Hint: Check the orientation of p wrt the edges of the polygon.

Finding tangent points

Input: point p outside H
polygon H = [po, p1,..., Pk-1] convex

e for i=0 to k-1 do
e prev = ((i == 0)? k-1: i-1);
e next = (l::k—l)? 0; i'l'].);

* if XOR (p is left-or-on (pprev, pi), p is left-or-on(pi, pnext))

e then: p;i is a tangent point

Putting it all together

Incremental CH

* H=[p1, p2, p3]
e fori=4tondo
e //add pito H
« if point_in_polygon(pi, H)
e //do nothing
e glse

- find p, the tangent point where orientation changes from L to R

o find p; the tangent point where orientation changes from R to L

. delete the part from p; to p; in H

Incremental CH

« H=[p1, p2 p3]
e fori=4tondo
e //add pito H

e if point_in_polygon(pi, H) < O(i)

e //do nothing
 else
- find p, the tangent point where orientation changes from L to R

~— O(i)

o find p; the tangent point where orientation changes from R to L

. delete the part from p; to p; in H

Analysis: 2 0(i) = O(n?)

Incremental CH, improved

* Pre-sort the points by their x-coordinates and add them in this order. Then

point p; is to the right of p;_;, so it will be outside CH(py, ps, - - -, Pi_1)

« No need to check if p; is inside the CH!

» pre-sort the points by their x-coordinates. Initialize H = [p1, p2, p3]

e fori=4tondo

o find p, the tangent point where orientation changes from L to R .
pk g 9 g - O(Z)

o find D the tangent point where orientation changes from R to L
. delete the part from p; to p; in H

Analysis: however, this is still Z 0(i) = O(n?)

l

But, we can finesse finding the tangent to run in O(n) total, overall all n points

Finding the UPPER tangent point of p, to the hull H of {p;,p,,...,p;_;}
o find vertex p,_; on H
* V=D
« while point p; lies to the right of (v, succ(v)) : v = succ(v)

/[claim: v is the upper tangent point

Pi

Pi-1 Finding the upper tangent
of p;, summed over all
iterations i, takes O(n)

Theorem: Incremental CH (in 2D) runs in O(nlg n) to sort the points followed by

O(n) to construct the convex hull.

A divide-and-conquer algorithm for CH

Divide-and-conquer framework

DC(input P)
if P is small, solve and return
else

divide input P into two halves, P1 and P2

resultl = DC(P1)
result2 = DC(P2)

result=figure_out_result_for_P _from_result1_and_result2
return result

Analysis: T(n) = 2T(n/2) + O()

. if merge phase is : T(n) =2T(n/2) + O(n)

=> 0(nlgn)

CH via divide-and-conquer

CH via divide-and-conquer
e find vertical line that splits P in half

CH via divide-and-conquer

e find vertical line that splits P in half
* let P1, P2 = set of points to the left/right of line

CH via divide-and-conquer

e find vertical line that splits P in half
 let P1, P2 = set of points to the left/right of line
e recursively find CH(P1)

CH via divide-and-conquer

e find vertical line that splits P in half
 let P1, P2 = set of points to the left/right of line
e recursively find CH(P1)

e recursively find CH P2 i :

P P

CH via divide-and-conquer

e find vertical line that splits P in half
* let P1, P2 = set of points to the left/right of line
e recursively find CH(P1)

e recursively find CH P2 i :

P P

CH via divide-and-conquer

e find vertical line that splits P in half

o let P1, P2 = set of points to the left/right of line
e recursively find CH(P1)

e recursively find CH P2

Merging two hulls in linear time " Here it looks like the upper

tangent is between the top
points in Pyand P>

« Need to find the two “tangents” (or “bridges”) * Is this always true”?

Merging two hulls in linear time " Here it looks like the upper

tangent is between the top
points in Pyand P>

« Need to find the two “tangents” (or “bridges”) * Is this always true”?

* Naive algoritnm: try all segments (a,b) with ain Hy and b in H»

Is the upper tangent guaranteed to connect the top points in P1and P2 -

Not necessarily...

The top-most point overall is on the CH, but not necessarily on the upper tangent

o
o
o

o
o
o

o
o
S

o
o
o

“‘
5

Merging two hulls in linear time

H1

e To find the upper bridge:
e a = right most point of Pl
e b = left most point of P2
» while one of succ(a) and pred(b) lies above line ab do:
e if succ(a) lies above ab then set a = succ(a)
e else : set b = pred(b)

e return ab as the upper bridge

H2

Finding the lower tangent

e Claim: All points in H1 and H2 are to the left of ab

Finding the lower tangent

« Claim: Points a,b are on the lower hulls of H1 and H2, respectively.

Finding the lower tangent

* |dea:

 start with a = rightmost point in H1, b = leftmost point in H2

* |ower a until all H1 is left of ab

* |lower b until all H2 is left of ab

* repeat

H1

H2

Finding the lower tangent

* |dea:

 start with a = rightmost point in H1, b = leftmost point in H2

* |ower a until all H1 is left of ab

* |lower b until all H2 is left of ab

* repeat

H1

(2

H2

Finding the lower tangent

* |dea:

 start with a = rightmost point in H1, b = leftmost point in H2

* |ower a until all H1 is left of ab

* |lower b until all H2 is left of ab

* repeat

H1

QO N

(2

H2

Finding the lower tangent

* |dea:

 start with a = rightmost point in H1, b = leftmost point in H2

* |ower a until all H1 is left of ab

* |lower b until all H2 is left of ab

* repeat

H1

D W

H2

Finding the lower tangent

* |dea:

 start with a = rightmost point in H1, b = leftmost point in H2

* |ower a until all H1 is left of ab

* |lower b until all H2 is left of ab

* repeat

H1

DN

H2

Finding the lower tangent

* |dea:

 start with a = rightmost point in H1, b = leftmost point in H2

* |ower a until all H1 is left of ab

* |lower b until all H2 is left of ab

* repeat

H1

DN

H2

(why) does this work?

Claim: At any point during the algorithm, segment ab cannot intersect the interior of
the polygons

==> a cannot move into the upper hull of P1, b cannot move into the upper hull of P2
==> The algorithm terminates
==> 0O(n)

m .
‘\\
N N\
. Dy
. .
\ RN
\ AN
0y DR
\ RSN
. RN
\ AN
\ RN

CH via divide-and-conquer

* Yet another illustration of the divide-and-conquer paradigm
. O(nlgn)

 Extends nicely to 3D

Convex hull in 2D: Summary

. Q(nlgn) lower bound
. Gift wrapping: O(h - n)

- output-size sensitive

Graham scan, Andrew’s monotone chain: O(n 1g n), but
not output-sensitive
does not transfer to 3d
. Quickhull: O(n?)
- Incremental CH : O(n 1g n)
- extends to 3D
. Divide-and-conquer CH: O(nlgn)

- extends to 3D

Convex hull: summary

Naive 0(7’13)
Gift wrapping O(h - n)
Quickhull O(n?)
Graham scan O(nlgn)
""" Andrew monotone o1\
chain O(nlgn)

..

