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Compute the Convex Hull

Given a set P of points in 2D, describe an algorithm to compute their convex hull

Output:

 array/list of points on the CH (in boundary order)

Input:

 array P of points (in 2D)



• Last time


• Brute force 


• Gift wrapping 


• Today 

• Graham scan 

• Quickhull

• Next time 


• Andrew’s monotone chain


• Incremental  hull


• Divide-and -conquer hull


• lower bound 

Algorithms for computing the convex hull



Start review



Convex hull properties 

• CH consists of extreme points and edges

• point is extreme  <==>  it is on the CH

• (pi, pj) form an edge on the CH <==> edge (pi, pj) is extreme

• point p is interior    <==>  p not on the CH

• Walking counter-clockwise on the boundary of the CH makes only left turns

• Consider a point  inside the CH. Then the points on the boundary of the CH 
are encountered in sorted radial order around 

p
p



Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.  

convex non-convex



Walk ccw along the boundary of a convex polygon

Only left turns!




p

O X

Y

tan θ =
p . y − q . y
p . x − q . xq

The radial angle of p with-respect-to q



For any point p inside, the points on the boundary are in radial order around p

p



Extreme points

extreme

• A point p is called extreme if there exists a line l through p, such that all the other 
points of P are on the same side of l (and not on l)



All points on the CH are extreme

All extreme points are on the CH

A point is on the CH  <==> it is extreme



Extreme edges

extreme

not extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)



Extreme edges

extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)



Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

extreme



Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

extreme



All edges on the CH are extreme

All extreme edges are on the CH

An edge is on the CH  <==> it is extreme



Interior points 

A point p is called  interior if p is contained in the 
interior of a triangle formed by three other points of P

• p interior <==> p not  on the CH 



End review



• Brute force: O(n3)

• Gift wrapping:   O(kn)

• output-size sensitive: O(n) best case, O(n2) worst case

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary 
dimensions; for many years was the primary algorithm for higher 
dimensions

• Next 

• Graham scan 

• Quickhull 

Algorithms 



Algorithm: 

Graham scan

• In late 60s an application at Bell Labs required the hull of 10,000 points, for which a quadratic 
algorithm was too slow 


• Graham developed an algorithm which runs in 


• It runs in one sort plus a linear pass!!


• Simple, intuitive, elegant and practical


O(n lg n)



Walk ccw along the boundary 
of a convex polygon

Ideas

Only left turns!

For any point p inside or on the CH, the 
points on the boundary are in radial 

order around p





Graham scan

• Idea:    start from a point p on the hull (e.g. lowest point)


           

p



Graham scan

• Idea:    start from a point p on the hull (e.g. lowest point)


            order all points by their ccw angle wrt p


p

angleq = tan−1 q . y − p . y
q . x − p . x

q



Graham scan

• Idea:    traverse the points in this order a, b, c, d, e, f, g, …


p

a

bd

e

f

g

h

i

j

k

l

c



Graham scan

• Idea:    traverse the points in this order a, b, c, d, e, f, g, …, making it convex


p

a

bd

e

f

g

h

i

j

k

l

c

on the CH



Graham scan

S = (a, p)

maintain S 

as the convex chain 

of 

the points traversed 


so far 

b

f

h

p

a

d

eg

i

j

k

l

c

on the CH



Next point b:   what do we do with it? 

S = (a, p)

b

p

a

d

eg

i

j

k

l

c

f

h



b

p

a

d

eg

i

j

k

l

c

f

h

S = (a, p)

Is b + (a, p) convex? YES!

is b left of pa?

push b to S

Next point b:   what do we do with it? 

top



b

p

a

d

eg

i

j

k

l

c

f

h

S = (b, a, p)
top



S = (b, a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

Next point c: Is c + S convex? YES!

is c left of ab?

push c to S

top



S = (c, b, a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

top



S = (c, b, a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

Next point d:
Is d + S convex? NO!

is d left of bc?

top



pop c

Is d + S convex? 

S = (d, c, b, a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

Next point d:

YES!

push d to S

Is d + S convex? NO!

is d left of bc?

top



b = top(S), a = second(S)


Next point q:   

S = (b, a, ….) S = (q, b, a, ….)

p

b a

q

p

b a

q
push q

• if q is left of a, b:  push(q, S)

In general

top top



S = (b, a, ….) S = (q, a, ….)

p

b

a
q

pop b

push q

p

b
aq

a

• while q is right of a, b: 

• pop (S)

• b = top(S),  a = second(S)
• push(q, S)

b = top(S), a = second(S)


Next point q:   

In general

top top



A vertex can trigger more than one pop

p

q

p

q

In general



Graham scan

• Find lowest point 

• Sort all other points ccw around p0

• Initialize stack  

• for  to  do 

• if  is left of (second(S),first(S)):  

• push  on S

• else 

• while  is right of (second(S), first(S))

•  pop S

• push  on S

p0

S = (p2, p1)
i = 3 n − 1

pi

pi

pi

pi

call them p1, p2, p3, …pn-1 in this order

note that we are ignoring some 
details, such as collinear points

top



Graham scan

• Find lowest point 

• Sort all other points ccw around p0

• Initialize stack  

• for  to  do 

• if pi is left of (second(S),first(S)):  
• push pi on S

• else 

• while  is right of (second(S), first(S))

•  pop S

• push  on S

p0

S = (p2, p1)
i = 3 n − 1

pi

pi

call them p1, p2, p3, …pn-1 in this order
top



ANALYSIS

O(n lg n)

We can show that this takes 
O(n)

• Find lowest point p0

• Sort all other points ccw around p0

• Initialize stack  

• for i=3 to n-1 do 
• while pi is right of (second(S), first(S))

• pop(S)
• push pi on S

S = (p2, p1)

One point can trigger many pops. But we can only pop points that were previously pushed. 
Every point is pushed once and popped at most once.


Graham-scan runs in O(n lg n) + O(n)

top



Project 2

• You’ll implement this!

• Along the way you’ll get to figure out what situations can cause problems and how 

to handle them

This is what we want



• point  comes before point  in radial order around  if  is right of 


• rightOf() is to radial sort what < is to sort

a b p a pb

Note on radial sorting 

p

angleq = tan−1 q . y − p . y
q . x − p . x

a

b



And final note..

It is possible to speed up Graham scan



It is possible to speed up Graham scan



It is possible to speed up Graham scan



It is possible to speed up Graham scan



Algorithm: Quickhull

(late 1970s)



left most point

right most point

upper hull

lower hull

Convex polygons: Properties



Quickhull  (late 1970s)

• Idea: start with 2 extreme points

a
b

• Similar to Quicksort



Quickhull 

• CH = CH of P1 (upper hull) + CH of P2 (lower hull)

a
b

P1

P2



a
b

P1

• CH = CH of P1 (upper hull) + CH of P2 (lower hull)

Quickhull 



a
b

P2

• CH = CH of P1 (upper hull) + CH of P2 (lower hull)

Quickhull 



• We’ll find the CH(P1) and CH(P2) separately

a
b

P1

P2

Quickhull 



• First let’s focus on P1

a
b

P1

Quickhull 



• For all points p in P1:  compute dist(p, ab)

a
b

assume no collinear

 points (for now)

Quickhull 



• Find the point c with largest distance (i.e. furthest away from ab)

a
b

c

• Claim: Point c must be an extreme point and thus on the CH of P1. (Why?) 

Quickhull 

• For all points p in P1:  compute dist(p, ab)



• Discard all points inside triangle abc

a
b

c

interior points

Quickhull 



• Recurse on the points left of ac and right of bc 

a
b

c

Quickhull 



• Compute CH of P2 similarly

a
b

c

Quickhull 



• Quickhull (P)
• find a, b

• partition P into P1, P2

• return a + Quickhull(a,b, P1) + b + Quickhull(b,a,P2)


• Quickhull(a, b, P)

//P is a set of points all on the left of ab. return the upper hull of P

• if P empty => return {}

• for each point p in P: compute its distance to ab

• let c = point with max distance

• let P1 = points to the left of ac 

• let P2 = points to the left of cb

• return Quickhull(a, c, P1) + c + Quickhull(c, b, P2)

a
b

c

Quickhull 



• Simulate Quickhull on an arbitrary small set of points  (assume no collinearities)

• Analysis: 

• Write a recurrence relation for its running time

• What/when is the worst case running time ?

• What/when is the best case running time ?  

• Challenge: Argue that Quickhull’s average complexity is  on points that are 

uniformly distributed

O(n)

Classwork



• Brute force: O(n3)

• Gift wrapping:   O(kn)

• output-size sensitive: O(n) best case, O(n2) worst case

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary dimensions; 
for many years was the primary algorithm for higher dimensions

• Graham scan: O (n lg n), but 

• not output-sensitive 

• does not transfer to 3d

• Quickhull:  O(n2)

• Next time  

• incremental, divide-and-conquer

•  lower bound Ω(n lg n)

Summary



• Brute force: O(n3)

• Gift wrapping:   O(kn)

• output-size sensitive: O(n) best case, O(n2) worst case

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary 
dimensions; for many years was the primary algorithm for higher 
dimensions

• Graham scan: , but 

• not output-sensitive 

• does not transfer to 3d

• Quickhull:   

• Next time  

• incremental, divide-and-conquer

•  lower bound 

O(n lg n)

O(n2)

Ω(n lg n)

Algorithms 


