Planar Conve

X Hulls

Computational Geometry [csci 3250]

Laura Toma
Bowdoin College

Compute the Convex Hull

Given a set P of points in 2D, describe an algorithm to compute their convex hull

| 2
| ®
| —a
@ @ Py ® . . . | |
8 | | .
@ . kS - | | |
® @ £ 9 . | |
3 ® . * e e . . ’
® | '
e .
| P—
Input: -

array P of points (in 2D) array/list of points on the CH (in boundary order)

Algorithms for computing the convex hull

Today
Graham scan

Quickhull

Start review

Convex hull properties

CH consists of extreme points and edges
point is extreme <==> itis on the CH
(pi, pj) form an edge on the CH <==> edge (pi, p)) is extreme
point p is interior <==> p not on the CH
Walking counter-clockwise on the boundary of the CH makes only left turns

Consider a point p inside the CH. Then the points on the boundary of the CH
are encountered in sorted radial order around p

Convexity

A polygon P is convex if for any p, g in P, the segment pq lies entirely in P.

convex NOoN-Convex

Walk ccw along the boundary of a convex polygon

Only left turns!

The radial angle of p with-respect-to g

Y,

4\ tan0=p.y_q°y
q‘ p.X—q.x

<V

For any point p inside, the points on the boundary are in radial order around p

Extreme points

A point p is called extreme if there exists a line | through p, such that all the other
points of P are on the same side of | (and not on |)

extreme \

A point is on the CH <==> it is extreme

All points on the CH are extreme

All extreme points are on the CH

Extreme edges

 Anedge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

o
. °
®
: ® a)
. ® ¢
extreme ._
] o
s o
2
s
®

not extreme
®

Extreme edges

 An edge (pj, pj) is extreme if all the other points of P are on one side of it (or on)

a .. extreme

Extreme edges

 An edge (pj, pj) is extreme if all the other points of P are on one side of it (or on)

O
b ®
@
e
O @ ._-:.
° :
E . .
i extreme
O & H
® .
&) @
] :
® H
@
@
O

Extreme edges

 An edge (pj, pj) is extreme if all the other points of P are on one side of it (or on)

<" extreme

An edge is on the CH <==>it is extreme

All edges on the CH are extreme

v lllllll-----

All extreme edges are on the CH

Interior points

* pinterior <==> p not on the CH

A point p is called interior if p is contained in the
» Interior of a triangle formed by three other points of P

End review

Algorithms

- Brute force: O(n?3)
- Gift wrapping: O(kn)

- output-size sensitive: O(n) best case, O(n2) worst case

- Next
- Graham scan

-« Quickhull

Algorithm:

GGraham scan

* In late 60s an application at Bell Labs required the hull of 10,000 points, for which a quadratic
algorithm was too slow

« Graham developed an algorithm which runs in O(n Ig n)
* |t runs in one sort plus a linear pass!!

« Simple, intuitive, elegant and practical

|deas

Only left turns!

For any point p inside or on the CH, the
points on the boundary are in radial
order around p

Walk ccw along the boundary
of a convex polygon

//return true if c is (strictly) left of ab, false otherwise

bool left(point2d a, b, c) {

return two signed area(a, b, c) > 0;

Graham scan

e |dea: start from a point p on the hull (e.g. lowest point)

Graham scan

e |dea: start from a point p on the hull (e.g. lowest point)

order all points by their ccw angle wrt p

149-Y—P-)Y

angle = tan
d qg.xX—p.x

GGraham scan

e |dea: traverse the pointsinthis ordera, b, c, d, e, f, g, ...

?f

®3

(Graham scan

* |dea: traverse the points in this order a, b, ¢, d, e, f, g, ..., making it convex

Graham scan

maintain S
as the convex chain
of
the points traversed
so far

S=(a,p)

Next point b: what do we do with it?

of

_ isbleft of pa?

—

e

Next point b: what do we do with it? Isb + (a, p) convex? YES!

push b to S

Q

(2

IS C left of ab?

S . ’ e P

Next point c: s ¢ + S convex? YES!

pushcto S

T= W MY AT oY e A—
.

Is d + S convex? NQO!
Next point d:

_ isdleftof bc?

Is d + S convex? NO!
Next point d:
POpP C l
'f Is d + S convex?
YES!
pushdto S

;

S = (d,@ b, a, p)

In general
b = top(S), a = second(S)

Next point g: - if g is left of a, b: push(q, S)

v v
p p

S:(b,a,) S=(q,b,a,)

In general

b = top(S), a = second(S)
- while q is right of a, b:

* pop (S)
* b =top(S), a=second(S)

Next point Q:

* push(q, S)

In general

A vertex can trigger more than one pop

GGraham scan

- Find lowest point p,

- Sort all other points ccw around po

. Initialize stack S = (i)u;, P1)

. fori=3ton—-1d
- if p; is left of (second(S),first(S)):

o)

- push p;on S

- else

- while p; is right of (second(S), first(S))

* pop S

- push p;on S

«—— call them p1, p2, P3, ...pn-1 in this order

note that we are ignoring some
details, such as collinear points

GGraham scan

. fori=3ton—1do

- Find lowest point p,

- Sort all other points ccw around po «—— call them p+, p2, P3, ...pPn-1 in this order
. Initialize stack S = (iju;,pl)

- while p; is right of (second(S), first(S))
pop S
- push p,on S

ANALYSIS

- Find lowest point po
- Sort all other points ccw around po D E— O(n lg n)

. Initialize stack S = (i?u;,m)

- fori=3ton-1do

- while pi is right of (second(S), first(S)) | We can show that this takes
+ pop(S) O)
* push pion S

Graham-scan runs in O(nlgn) + O(n)

One point can trigger many pops. But we can only pop points that were previously pushed.
Every point is pushed once and popped at most once.

Project 2

e You'll implement this!

» Along the way you'll get to figure out what situations can cause problems and how
to handle them

This is what we want

Note on radial sorting

149-Y—P-)Y

angleq = tan

.......................... q.xX—p.x

o

« point a comes before point b in radial order around p if a is right of pb

 rightOf() is to radial sort what < is to sort

And final note..

It is possible to speed up Graham scan

It is possible to speed up Graham scan

It is possible to speed up Graham scan

It is possible to speed up Graham scan

Algorithm: Quickhull

(late 1970s)

Convex polygons: Properties
upper hull

right most point

left most point

lower hull

Quickhull (late 1970s)

e Similar to Quicksort

e |dea: start with 2 extreme points

Quickhull

e CH = CH of P4 (upper hull) + CH of P2 (lower hull)

Quickhull

e CH = CH of P4 (upper hull) + CH of P2 (lower hull)

Quickhull

e CH = CH of P4 (upper hull) + CH of P2 (lower hull)

Quickhull

o We'll find the CH(P+) and CH(P2) separately

Quickhull

e First let’s focus on P1

Quickhull

e For all points p in P1: compute dist(p, ab)

Quickhull

e For all points p in P1: compute dist(p, ab)

e Find the point ¢ with largest distance (i.e. furthest away from ab)

rC

e Claim: Point ¢ must be an extreme point and thus on the CH of P1. (Why?)

Quickhull

» Discard all points inside triangle abc

Quickhull

* Recurse on the points left of ac and right of bc

Quickhull

e Compute CH of P2 similarly

Quickhull

» Quickhull (P)

e find a, b

e partition P into P1, P2
e return a + Quickhull(a,b, P1) + b + Quickhull(b,a,P2)

- Quickhull(a, b, P)

e if P empty => return {}

 for each point p in P: compute its distance to ab
 let ¢ = point with max distance

* |let P1 = points to the left of ac

» let P2 = points to the left of cb

 return Quickhull(a, ¢, P1) + ¢ + Quickhull(c, b, P2)

Classwork

- Simulate Quickhull on an arbitrary small set of points (assume no collinearities)
- Analysis:

- Write a recurrence relation for its running time

- What/when is the worst case running time ?

- What/when is the best case running time ?

. Challenge: Argue that Quickhull’s average complexity is O(n) on points that are

uniformly distributed

sSummary

- Brute force: O(n3)
- Gift wrapping: O(kn)

- output-size sensitive: O(n) best case, O(n2) worst case

Graham scan: O (n Ig n), but
not output-sensitive
does not transfer to 3d

- Quickhull: O(n2)

Algorithms

- Brute force: O(n3)
- Gift wrapping: O(kn)

- output-size sensitive: O(n) best case, O(n2) worst case

. Graham scan: O(nlg n), but
not output-sensitive

does not transfer to 3d

. Quickhull: O(n?)

