
Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Planar Convex Hulls (II)

Compute the Convex Hull

Given a set P of points in 2D, describe an algorithm to compute their convex hull

Output:

 array/list of points on the CH (in boundary order)

Input:

 array P of points (in 2D)

• Last time

• Brute force

• Gift wrapping

• Today

• Graham scan

• Quickhull

• Next time

• Andrew’s monotone chain

• Incremental hull

• Divide-and -conquer hull

• lower bound

Algorithms for computing the convex hull

Start review

Convex hull properties

• CH consists of extreme points and edges

• point is extreme <==> it is on the CH

• (pi, pj) form an edge on the CH <==> edge (pi, pj) is extreme

• point p is interior <==> p not on the CH

• Walking counter-clockwise on the boundary of the CH makes only left turns

• Consider a point inside the CH. Then the points on the boundary of the CH
are encountered in sorted radial order around

p
p

Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.

convex non-convex

Walk ccw along the boundary of a convex polygon

Only left turns!

p

O X

Y

tan θ =
p . y − q . y
p . x − q . xq

The radial angle of p with-respect-to q

For any point p inside, the points on the boundary are in radial order around p

p

Extreme points

extreme

• A point p is called extreme if there exists a line l through p, such that all the other
points of P are on the same side of l (and not on l)

All points on the CH are extreme

All extreme points are on the CH

A point is on the CH <==> it is extreme

Extreme edges

extreme

not extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

Extreme edges

extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

extreme

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

extreme

All edges on the CH are extreme

All extreme edges are on the CH

An edge is on the CH <==> it is extreme

Interior points

A point p is called interior if p is contained in the
interior of a triangle formed by three other points of P

• p interior <==> p not on the CH

End review

• Brute force: O(n3)

• Gift wrapping: O(kn)

• output-size sensitive: O(n) best case, O(n2) worst case

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary
dimensions; for many years was the primary algorithm for higher
dimensions

• Next

• Graham scan

• Quickhull

Algorithms

Algorithm:

Graham scan

• In late 60s an application at Bell Labs required the hull of 10,000 points, for which a quadratic
algorithm was too slow

• Graham developed an algorithm which runs in

• It runs in one sort plus a linear pass!!

• Simple, intuitive, elegant and practical

O(n lg n)

Walk ccw along the boundary
of a convex polygon

Ideas

Only left turns!

For any point p inside or on the CH, the
points on the boundary are in radial

order around p

Graham scan

• Idea: start from a point p on the hull (e.g. lowest point)

p

Graham scan

• Idea: start from a point p on the hull (e.g. lowest point)

 order all points by their ccw angle wrt p

p

angleq = tan−1 q . y − p . y
q . x − p . x

q

Graham scan

• Idea: traverse the points in this order a, b, c, d, e, f, g, …

p

a

bd

e

f

g

h

i

j

k

l

c

Graham scan

• Idea: traverse the points in this order a, b, c, d, e, f, g, …, making it convex

p

a

bd

e

f

g

h

i

j

k

l

c

on the CH

Graham scan

S = (a, p)

maintain S

as the convex chain

of

the points traversed

so far

b

f

h

p

a

d

eg

i

j

k

l

c

on the CH

Next point b: what do we do with it?

S = (a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

b

p

a

d

eg

i

j

k

l

c

f

h

S = (a, p)

Is b + (a, p) convex? YES!

is b left of pa?

push b to S

Next point b: what do we do with it?

top

b

p

a

d

eg

i

j

k

l

c

f

h

S = (b, a, p)
top

S = (b, a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

Next point c: Is c + S convex? YES!

is c left of ab?

push c to S

top

S = (c, b, a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

top

S = (c, b, a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

Next point d:
Is d + S convex? NO!

is d left of bc?

top

pop c

Is d + S convex?

S = (d, c, b, a, p)

b

p

a

d

eg

i

j

k

l

c

f

h

Next point d:

YES!

push d to S

Is d + S convex? NO!

is d left of bc?

top

b = top(S), a = second(S)

Next point q:

S = (b, a, ….) S = (q, b, a, ….)

p

b a

q

p

b a

q
push q

• if q is left of a, b: push(q, S)

In general

top top

S = (b, a, ….) S = (q, a, ….)

p

b

a
q

pop b

push q

p

b
aq

a

• while q is right of a, b:

• pop (S)

• b = top(S), a = second(S)
• push(q, S)

b = top(S), a = second(S)

Next point q:

In general

top top

A vertex can trigger more than one pop

p

q

p

q

In general

Graham scan

• Find lowest point

• Sort all other points ccw around p0

• Initialize stack

• for to do

• if is left of (second(S),first(S)):

• push on S

• else

• while is right of (second(S), first(S))

• pop S

• push on S

p0

S = (p2, p1)
i = 3 n − 1

pi

pi

pi

pi

call them p1, p2, p3, …pn-1 in this order

note that we are ignoring some
details, such as collinear points

top

Graham scan

• Find lowest point

• Sort all other points ccw around p0

• Initialize stack

• for to do

• if pi is left of (second(S),first(S)):
• push pi on S

• else

• while is right of (second(S), first(S))

• pop S

• push on S

p0

S = (p2, p1)
i = 3 n − 1

pi

pi

call them p1, p2, p3, …pn-1 in this order
top

ANALYSIS

O(n lg n)

We can show that this takes
O(n)

• Find lowest point p0

• Sort all other points ccw around p0

• Initialize stack

• for i=3 to n-1 do
• while pi is right of (second(S), first(S))

• pop(S)
• push pi on S

S = (p2, p1)

One point can trigger many pops. But we can only pop points that were previously pushed.
Every point is pushed once and popped at most once.

Graham-scan runs in O(n lg n) + O(n)

top

Project 2

• You’ll implement this!

• Along the way you’ll get to figure out what situations can cause problems and how

to handle them

This is what we want

• point comes before point in radial order around if is right of

• rightOf() is to radial sort what < is to sort

a b p a pb

Note on radial sorting

p

angleq = tan−1 q . y − p . y
q . x − p . x

a

b

And final note..

It is possible to speed up Graham scan

It is possible to speed up Graham scan

It is possible to speed up Graham scan

It is possible to speed up Graham scan

Algorithm: Quickhull

(late 1970s)

left most point

right most point

upper hull

lower hull

Convex polygons: Properties

Quickhull (late 1970s)

• Idea: start with 2 extreme points

a
b

• Similar to Quicksort

Quickhull

• CH = CH of P1 (upper hull) + CH of P2 (lower hull)

a
b

P1

P2

a
b

P1

• CH = CH of P1 (upper hull) + CH of P2 (lower hull)

Quickhull

a
b

P2

• CH = CH of P1 (upper hull) + CH of P2 (lower hull)

Quickhull

• We’ll find the CH(P1) and CH(P2) separately

a
b

P1

P2

Quickhull

• First let’s focus on P1

a
b

P1

Quickhull

• For all points p in P1: compute dist(p, ab)

a
b

assume no collinear

 points (for now)

Quickhull

• Find the point c with largest distance (i.e. furthest away from ab)

a
b

c

• Claim: Point c must be an extreme point and thus on the CH of P1. (Why?)

Quickhull

• For all points p in P1: compute dist(p, ab)

• Discard all points inside triangle abc

a
b

c

interior points

Quickhull

• Recurse on the points left of ac and right of bc

a
b

c

Quickhull

• Compute CH of P2 similarly

a
b

c

Quickhull

• Quickhull (P)
• find a, b

• partition P into P1, P2

• return a + Quickhull(a,b, P1) + b + Quickhull(b,a,P2)

• Quickhull(a, b, P)

//P is a set of points all on the left of ab. return the upper hull of P

• if P empty => return {}

• for each point p in P: compute its distance to ab

• let c = point with max distance

• let P1 = points to the left of ac

• let P2 = points to the left of cb

• return Quickhull(a, c, P1) + c + Quickhull(c, b, P2)

a
b

c

Quickhull

• Simulate Quickhull on an arbitrary small set of points (assume no collinearities)

• Analysis:

• Write a recurrence relation for its running time

• What/when is the worst case running time ?

• What/when is the best case running time ?

• Challenge: Argue that Quickhull’s average complexity is on points that are

uniformly distributed

O(n)

Classwork

• Brute force: O(n3)

• Gift wrapping: O(kn)

• output-size sensitive: O(n) best case, O(n2) worst case

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary dimensions;
for many years was the primary algorithm for higher dimensions

• Graham scan: O (n lg n), but

• not output-sensitive

• does not transfer to 3d

• Quickhull: O(n2)

• Next time

• incremental, divide-and-conquer

• lower bound Ω(n lg n)

Summary

• Brute force: O(n3)

• Gift wrapping: O(kn)

• output-size sensitive: O(n) best case, O(n2) worst case

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary
dimensions; for many years was the primary algorithm for higher
dimensions

• Graham scan: , but

• not output-sensitive

• does not transfer to 3d

• Quickhull:

• Next time

• incremental, divide-and-conquer

• lower bound

O(n lg n)

O(n2)

Ω(n lg n)

Algorithms

