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Outline



Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.  

convex non-convex



Convexity: algebraic view

• A convex combination of points p1, p2, …pk is a point of the form    

p

q

c1p + (1-c1)q
p1

p3

p2

c1p1+c2p2+(1-c1-c2)p3

a triangle consists of all convex 
combinations of its 3 vertices

• The convex hull CH(P) = all convex combinations of points in P

a segment consists of all convex 
combinations of its 2 vertices

c1p1 + c2p2 + . . . + ck pk with ci ∈ [0,1], c1 + c2 + . . . + ck = 1



Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P



Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P



Compute the Convex Hull

Given a set P of points in 2D, describe an algorithm to compute their convex hull

Output:

 array/list of points on the CH (in boundary order)

Input:

 array P of points (in 2D)



• One of the first problems studied in CG

• Many solutions


• simple, elegant, intuitive

• illustrate techniques for geometrical algorithms


• Used in many applications 

• robotics, path planning, partitioning problems, shape recognition, 

separation problems, etc 

Convex Hull



• Shape analysis, matching, recognition  

• approximate objects by their CH

Applications



• Path planning:  find (shortest) collision-free path from start to end

Applications

start

end

obstacle



• Path planning:  find (shortest) collision-free path from start to end


• The shortest path follows the CH(obstacle)

• it is the shorter of the upper path  and lower path 

Applications

start

end

obstacle



• Partitioning  problems   

• does there exist a line separating two objects? 

Applications

YES



• Partitioning  problems   

• does there exist a line separating two objects? 

Applications

NO



• Partitioning  problems   

• does there exist a line separating two objects? 

Applications

YES



• Partitioning  problems   

• does there exist a line separating two objects? 

Applications

NO



• Find the two points in P that are farthest away

Applications



• Find the two points in P that are farthest away

Applications



So, we want to compute the convex hull

Output:

 list of points on the CH (in boundary order)

Input:

 array P of points (in 2D)



can be included / skipped

Several types of convex hull output are conceivable

Convex Hull Variants

• in boundary order

• in arbitrary order

• all points on the hull

• only non-collinear points

• It may seem that computing in boundary order is harder. It is known that identifying th epoints on th eCH has 
a lower bound of . Therefore sorting is not the bottleneck.Ω(n lg n)



Convex Hull: 


Some basic properties 



Walk ccw along the boundary of a convex polygon

Only left turns!




p

O X

Y

tan θ =
p . y
p . xθ

p

O X

Y

tan θ =
p . y
p . x

θ

q



For any point p inside, the points on the boundary are in radial order around p

p



Extreme points

extreme

• A point p is called extreme if there exists a line l through p, such that all the other 
points of P are on the same side of l (and not on l)



Extreme points

extreme

• A point p is called extreme if there exists a line l through p, such that all the other 
points of P are on the same side of l (and not on l)



Extreme points

extreme

extreme

• A point p is called extreme if there exists a line l through p, such that all the other 
points of P are on the same side of l (and not on l)

NOT extreme



All points on the CH are extreme

All extreme points are on the CH

A point is on the CH  <==> it is extreme



Extreme edges

extreme

not extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)



Extreme edges
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Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

extreme



Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

extreme



All edges on the CH are extreme

All extreme edges are on the CH

An edge is on the CH  <==> it is extreme



Interior points 

A point p is called  interior if p is contained in the 
interior of a triangle formed by three other points of P

• p interior <==> p not  on the CH 



Convex hull properties: Summary

• Walking counter-clockwise on the boundary of the CH you make only left turns

• Consider a point  inside the CH. Then the points on the boundary of the CH 
are encountered in sorted radial order around 

• CH consists of extreme points and edges

• point is extreme  <==>  it is on the CH

• (pi, pj) form an edge on the CH <==> edge (pi, pj) is extreme

• point p is interior    <==>  p not on the CH

p
p



Algorithm: Brute force



Algorithm: Brute force

Algorithm (input P)

• for all distinct pairs (pi, pj)


• check if edge (pi,pj) is extreme

• Analysis?

Idea: Find extreme edges



Algorithm: Gift wrapping
✦ by Chand and Kapur [1970].



p

q

r

Idea: use an edge to find the next one

We know that CH consists of extreme edges, and each edge shares a vertex with next 
edge

Algorithm: Gift wrapping

Suppose we found edge pq

The next edge starts at q



p

q

r

Idea: use an edge to find the next one

We know that CH consists of extreme edges, and each edge shares a vertex with  next 
edge

Algorithm: Gift wrapping

Once we found edge (q,r)

The next edge starts at r



p

q

r

Start from a point p that is guaranteed to be in CH 

How to find an extreme edge to start from? 



• Claim

• point with minimum x-coordinate is extreme 

• point with maximum x-coordinate is extreme 

• point with minimum y-coordinate is extreme 

• point with maximum y-coordinate is extreme


• Can you justify why? 



• Start from bottom-most point   (if more than one, pick right most)

Algorithm: Gift wrapping 



• Start from bottom-most point   (if more than one, pick right most)

• Find first edge: how??

Algorithm: Gift wrapping 



• Start from bottom-most point   (if more than one, pick right most)

• Find first edge: 

minimum slope

Algorithm: Gift wrapping 

• for each point p’: compute slope of p’ wrt p

• let q = point with smallest slope


    //claim: pq is extreme edge 

• output (p, q) as first edge 



• Start from bottom-most point   (if more than one, pick right most)

• Find first edge pq

• Repeat: find extreme edge from q

p

q

How to find next point r?

r

Algorithm: Gift wrapping 



p

q

r



• Let  = point with smallest y-coord (if more than one, pick right-most)


• Let  = point with smallest slope wrt 


• add  points  to the CH


• repeat 

• let q = point with smallest slope wrt prev edge on the hull


•    add point  to the CH


• until q = 

p0

p p0

p0, p

q
p0

Algorithm: Gift wrapping 

p0

p

q



• q is the point that appears to be furthest to the right to someone standing at p

p

q

r

p

q

Can be implemented with left() 

p

• initialize q to be an arbitrary point 

• for each point u   (u != q): 


• if left(p, u, q):   q = u



• Simulate Gift-Wrapping on an arbitrary (small) set of points   

• What are configurations of points that cause troubles for Gift Wrapping?  
(referred to as degenerate cases) 

• Running time: Express function of n and k, where k is the output size 
(number of points on the convex hull)

• How small/large can k be for a set of n points? 

• Show examples that trigger best/worst cases

• Based on this, when is Gift-wrapping a good choice to compute CH 
(i.e. when is it efficient)?

Class work



• Runs in  time, where k is the size of the CH(P)


• Efficient if k is small: 


• For k = O(1), it takes 


• Not efficient if k is large: 


• For , Gift wrapping takes 


• Faster algorithms are known 


• Gift wrapping extends easily to 3D and for many years was the primary algorithm 

for 3D


O(k ⋅ n)

O(n)

k = O(n) O(n2)

Gift wrapping  summary



• Brute force: 


• Gift wrapping:   


• output-size sensitive: O(n) best case, O(n2) worst case


✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary 
dimensions; for many years was the primary algorithm for higher 
dimensions


• Graham scan


• Quickhull


• incremental, 


• divide-and-conquer


•  lower bound 

O(n3)

O(k ⋅ n)

Ω(n lg n)

Summary


