
Planar convex hulls (I)

Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

• Definition and properties

• Algorithms for computing the convex hull

• Brute force

• Gift wrapping

• Next times

• Quickhull

• Graham scan

• Andrew’s monotone chain

• Incremental hull

• Divide-and -conquer hull

• Lower bound

Outline

Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.

convex non-convex

Convexity: algebraic view

• A convex combination of points p1, p2, …pk is a point of the form

p

q

c1p + (1-c1)q
p1

p3

p2

c1p1+c2p2+(1-c1-c2)p3

a triangle consists of all convex
combinations of its 3 vertices

• The convex hull CH(P) = all convex combinations of points in P

a segment consists of all convex
combinations of its 2 vertices

c1p1 + c2p2 + . . . + ck pk with ci ∈ [0,1], c1 + c2 + . . . + ck = 1

Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P

Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P

Compute the Convex Hull

Given a set P of points in 2D, describe an algorithm to compute their convex hull

Output:

 array/list of points on the CH (in boundary order)

Input:

 array P of points (in 2D)

• One of the first problems studied in CG

• Many solutions

• simple, elegant, intuitive

• illustrate techniques for geometrical algorithms

• Used in many applications

• robotics, path planning, partitioning problems, shape recognition,

separation problems, etc

Convex Hull

• Shape analysis, matching, recognition

• approximate objects by their CH

Applications

• Path planning: find (shortest) collision-free path from start to end

Applications

start

end

obstacle

• Path planning: find (shortest) collision-free path from start to end

• The shortest path follows the CH(obstacle)

• it is the shorter of the upper path and lower path

Applications

start

end

obstacle

• Partitioning problems

• does there exist a line separating two objects?

Applications

YES

• Partitioning problems

• does there exist a line separating two objects?

Applications

NO

• Partitioning problems

• does there exist a line separating two objects?

Applications

YES

• Partitioning problems

• does there exist a line separating two objects?

Applications

NO

• Find the two points in P that are farthest away

Applications

• Find the two points in P that are farthest away

Applications

So, we want to compute the convex hull

Output:

 list of points on the CH (in boundary order)

Input:

 array P of points (in 2D)

can be included / skipped

Several types of convex hull output are conceivable

Convex Hull Variants

• in boundary order

• in arbitrary order

• all points on the hull

• only non-collinear points

• It may seem that computing in boundary order is harder. It is known that identifying th epoints on th eCH has
a lower bound of . Therefore sorting is not the bottleneck.Ω(n lg n)

Convex Hull:

Some basic properties

Walk ccw along the boundary of a convex polygon

Only left turns!

p

O X

Y

tan θ =
p . y
p . xθ

p

O X

Y

tan θ =
p . y
p . x

θ

q

For any point p inside, the points on the boundary are in radial order around p

p

Extreme points

extreme

• A point p is called extreme if there exists a line l through p, such that all the other
points of P are on the same side of l (and not on l)

Extreme points

extreme

• A point p is called extreme if there exists a line l through p, such that all the other
points of P are on the same side of l (and not on l)

Extreme points

extreme

extreme

• A point p is called extreme if there exists a line l through p, such that all the other
points of P are on the same side of l (and not on l)

NOT extreme

All points on the CH are extreme

All extreme points are on the CH

A point is on the CH <==> it is extreme

Extreme edges

extreme

not extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

Extreme edges

extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

extreme

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

extreme

All edges on the CH are extreme

All extreme edges are on the CH

An edge is on the CH <==> it is extreme

Interior points

A point p is called interior if p is contained in the
interior of a triangle formed by three other points of P

• p interior <==> p not on the CH

Convex hull properties: Summary

• Walking counter-clockwise on the boundary of the CH you make only left turns

• Consider a point inside the CH. Then the points on the boundary of the CH
are encountered in sorted radial order around

• CH consists of extreme points and edges

• point is extreme <==> it is on the CH

• (pi, pj) form an edge on the CH <==> edge (pi, pj) is extreme

• point p is interior <==> p not on the CH

p
p

Algorithm: Brute force

Algorithm: Brute force

Algorithm (input P)

• for all distinct pairs (pi, pj)

• check if edge (pi,pj) is extreme

• Analysis?

Idea: Find extreme edges

Algorithm: Gift wrapping
✦ by Chand and Kapur [1970].

p

q

r

Idea: use an edge to find the next one

We know that CH consists of extreme edges, and each edge shares a vertex with next
edge

Algorithm: Gift wrapping

Suppose we found edge pq

The next edge starts at q

p

q

r

Idea: use an edge to find the next one

We know that CH consists of extreme edges, and each edge shares a vertex with next
edge

Algorithm: Gift wrapping

Once we found edge (q,r)

The next edge starts at r

p

q

r

Start from a point p that is guaranteed to be in CH

How to find an extreme edge to start from?

• Claim

• point with minimum x-coordinate is extreme

• point with maximum x-coordinate is extreme

• point with minimum y-coordinate is extreme

• point with maximum y-coordinate is extreme

• Can you justify why?

• Start from bottom-most point (if more than one, pick right most)

Algorithm: Gift wrapping

• Start from bottom-most point (if more than one, pick right most)

• Find first edge: how??

Algorithm: Gift wrapping

• Start from bottom-most point (if more than one, pick right most)

• Find first edge:

minimum slope

Algorithm: Gift wrapping

• for each point p’: compute slope of p’ wrt p

• let q = point with smallest slope

 //claim: pq is extreme edge

• output (p, q) as first edge

• Start from bottom-most point (if more than one, pick right most)

• Find first edge pq

• Repeat: find extreme edge from q

p

q

How to find next point r?

r

Algorithm: Gift wrapping

p

q

r

• Let = point with smallest y-coord (if more than one, pick right-most)

• Let = point with smallest slope wrt

• add points to the CH

• repeat

• let q = point with smallest slope wrt prev edge on the hull

• add point to the CH

• until q =

p0

p p0

p0, p

q
p0

Algorithm: Gift wrapping

p0

p

q

• q is the point that appears to be furthest to the right to someone standing at p

p

q

r

p

q

Can be implemented with left()

p

• initialize q to be an arbitrary point

• for each point u (u != q):

• if left(p, u, q): q = u

• Simulate Gift-Wrapping on an arbitrary (small) set of points

• What are configurations of points that cause troubles for Gift Wrapping?
(referred to as degenerate cases)

• Running time: Express function of n and k, where k is the output size
(number of points on the convex hull)

• How small/large can k be for a set of n points?

• Show examples that trigger best/worst cases

• Based on this, when is Gift-wrapping a good choice to compute CH
(i.e. when is it efficient)?

Class work

• Runs in time, where k is the size of the CH(P)

• Efficient if k is small:

• For k = O(1), it takes

• Not efficient if k is large:

• For , Gift wrapping takes

• Faster algorithms are known

• Gift wrapping extends easily to 3D and for many years was the primary algorithm

for 3D

O(k ⋅ n)

O(n)

k = O(n) O(n2)

Gift wrapping summary

• Brute force:

• Gift wrapping:

• output-size sensitive: O(n) best case, O(n2) worst case

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary
dimensions; for many years was the primary algorithm for higher
dimensions

• Graham scan

• Quickhull

• incremental,

• divide-and-conquer

• lower bound

O(n3)

O(k ⋅ n)

Ω(n lg n)

Summary

