

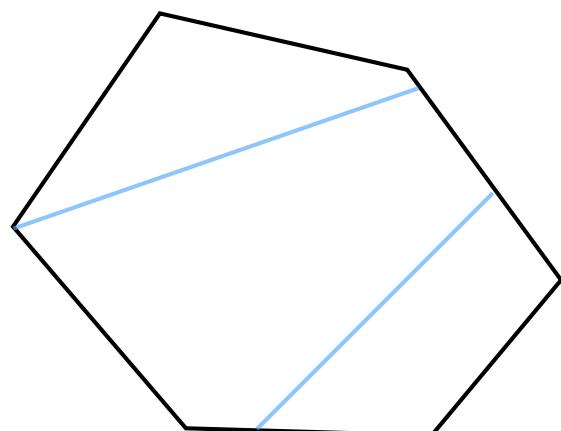
Planar convex hulls (I)

Outline

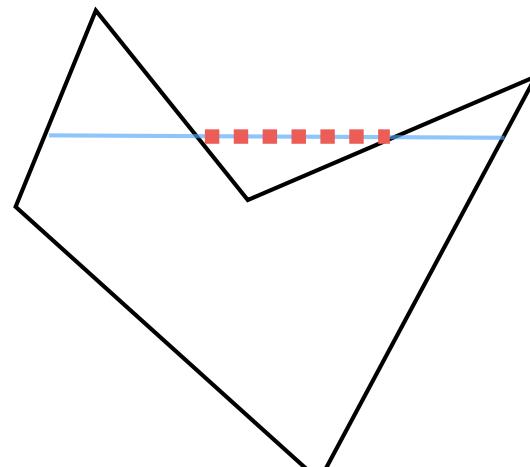
- Definition and properties
- Algorithms for computing the convex hull
 - Brute force
 - Gift wrapping
- Next times
 - Quickhull
 - Graham scan
 - Andrew's monotone chain
 - Incremental hull
 - Divide-and -conquer hull
 - Lower bound

Convexity

A polygon P is **convex** if for any p, q in P , the segment pq lies entirely in P .



convex

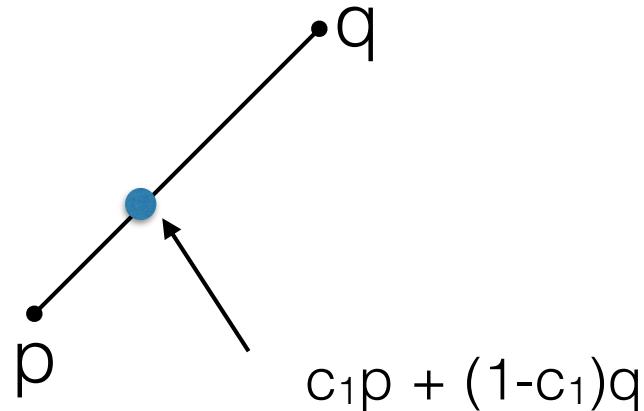


non-convex

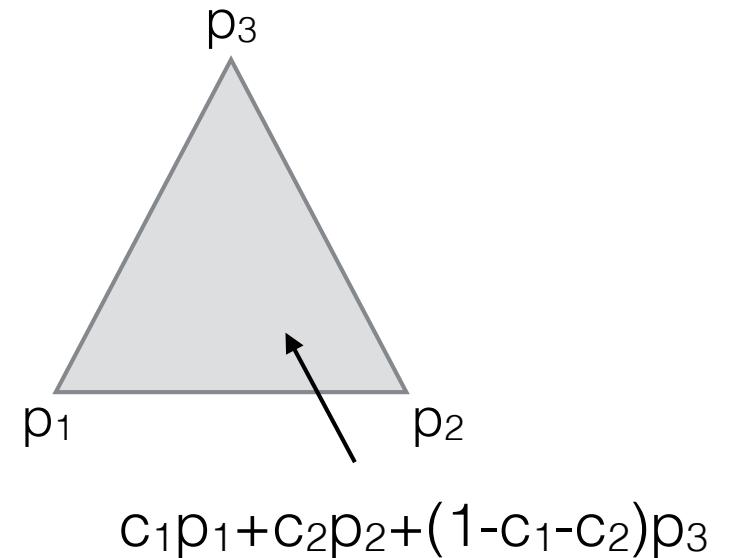
Convexity: algebraic view

- A **convex combination** of points p_1, p_2, \dots, p_k is a point of the form

$$c_1p_1 + c_2p_2 + \dots + c_kp_k \text{ with } c_i \in [0,1], c_1 + c_2 + \dots + c_k = 1$$



a segment consists of all convex combinations of its 2 vertices

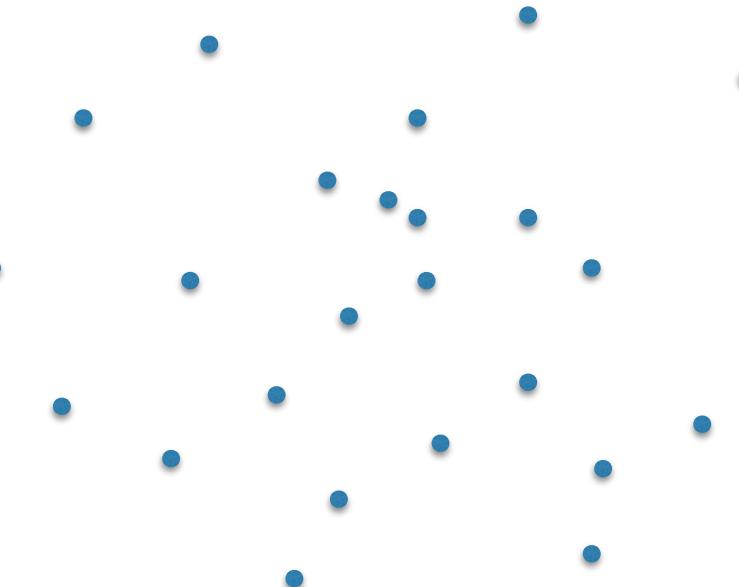


a triangle consists of all convex combinations of its 3 vertices

- The convex hull $CH(P) =$ all convex combinations of points in P

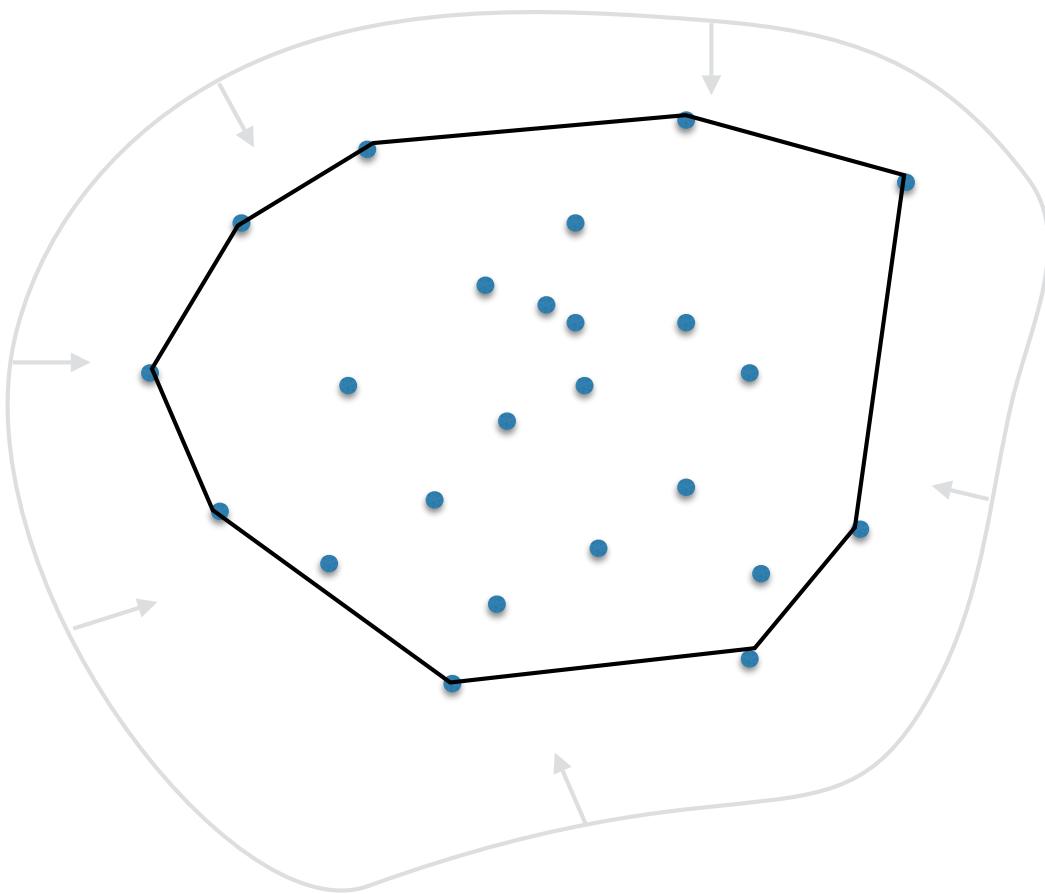
Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P



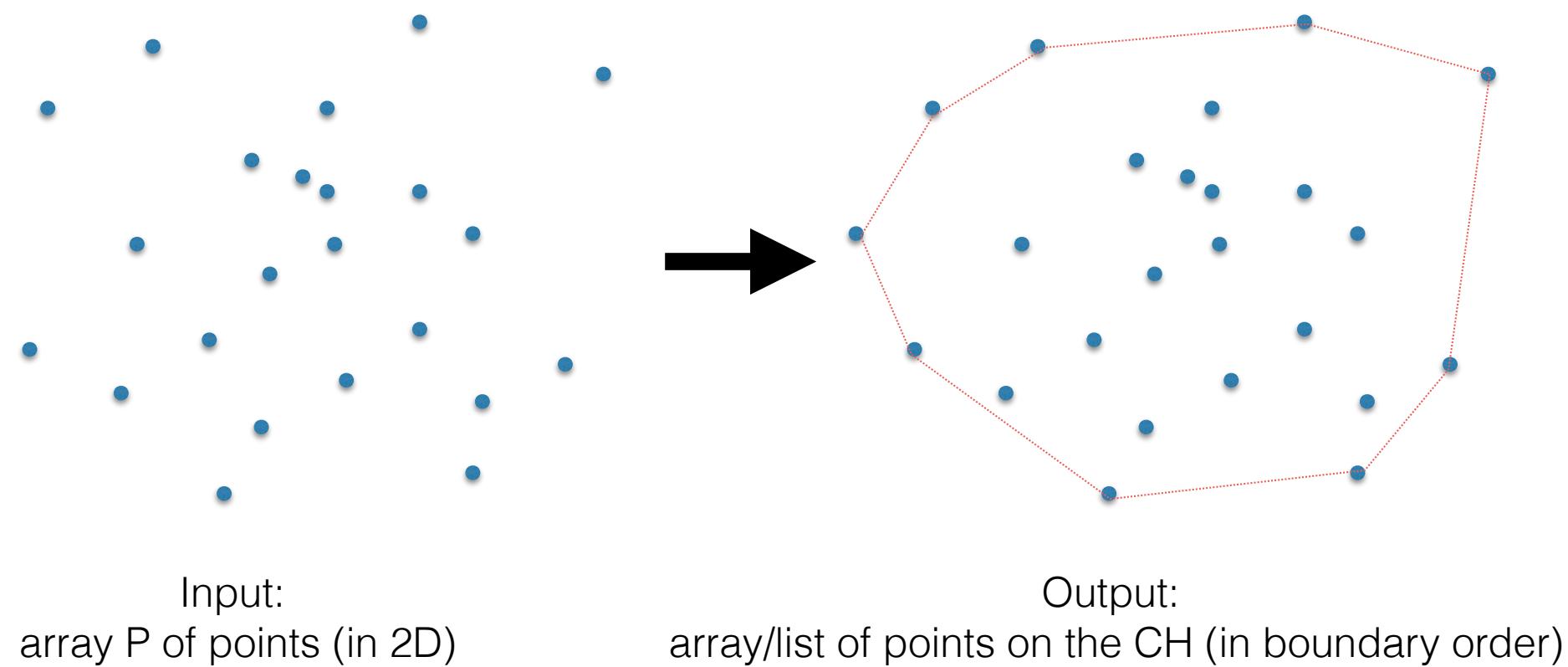
Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P



Compute the Convex Hull

Given a set P of points in 2D, describe an algorithm to compute their convex hull

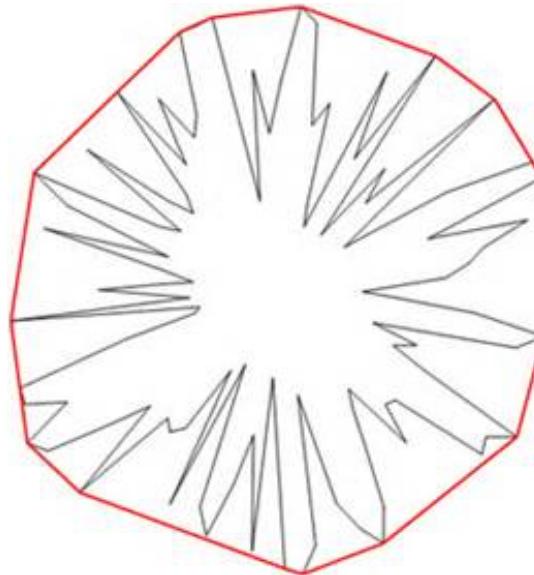


Convex Hull

- One of the first problems studied in CG
- Many solutions
 - simple, elegant, intuitive
 - illustrate techniques for geometrical algorithms
- Used in many applications
 - robotics, path planning, partitioning problems, shape recognition, separation problems, etc

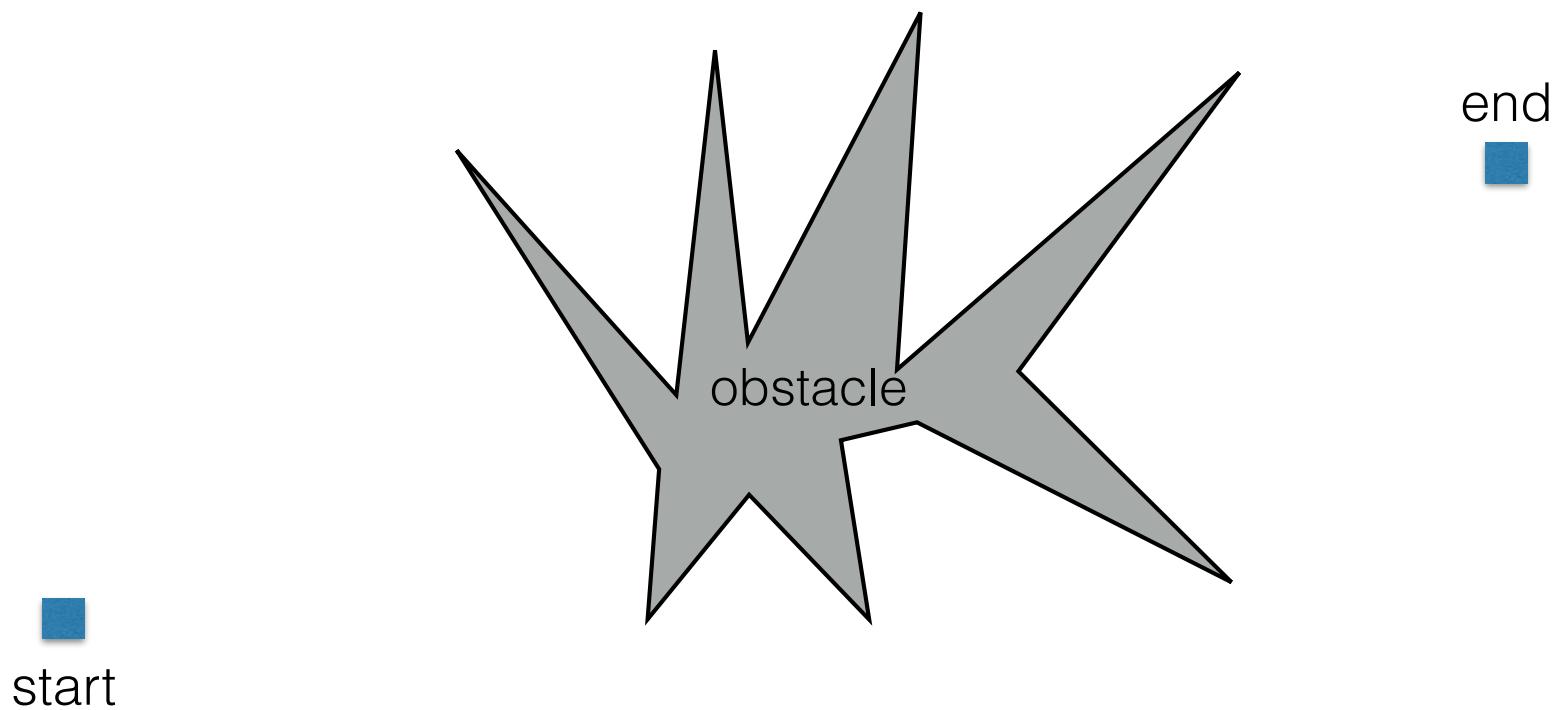
Applications

- Shape analysis, matching, recognition
 - approximate objects by their CH



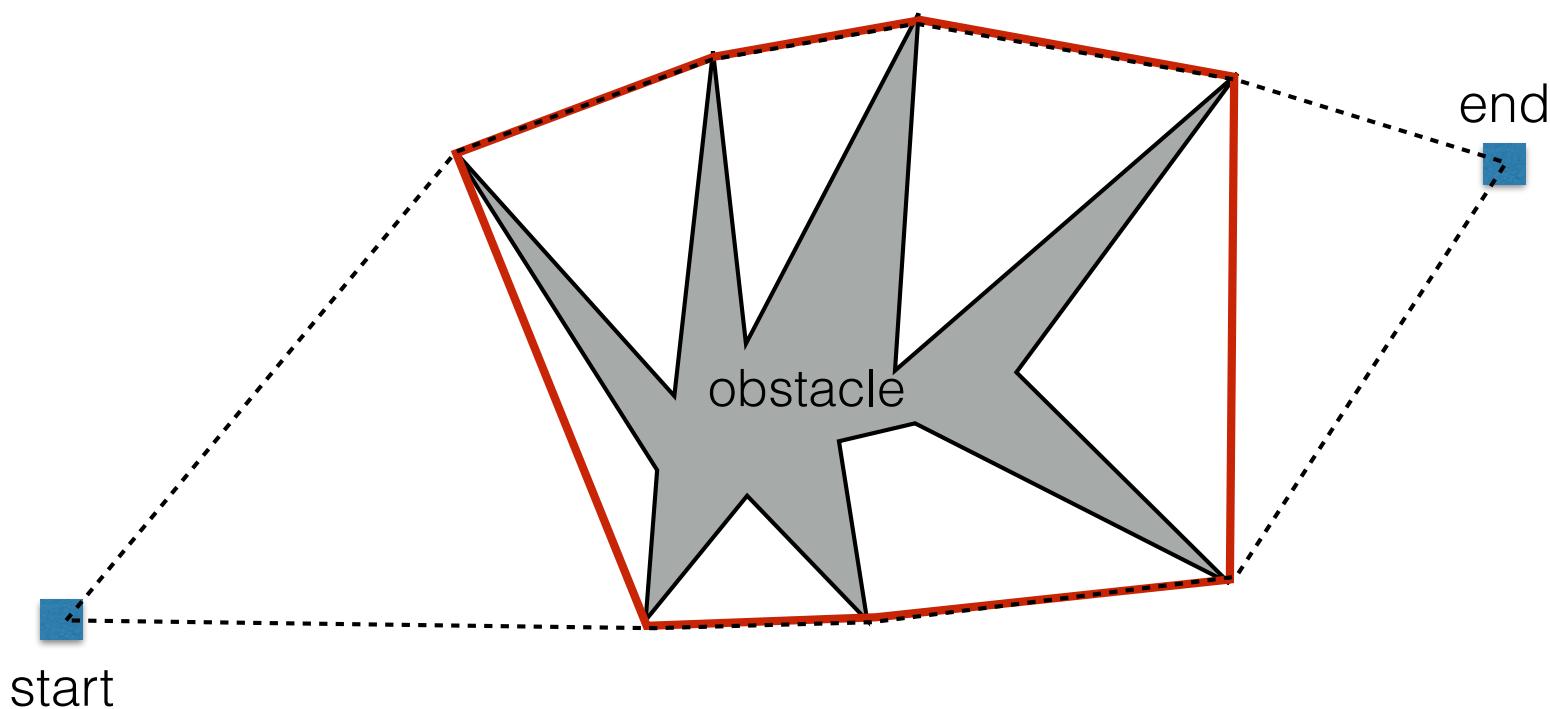
Applications

- Path planning: find (shortest) collision-free path from start to end



Applications

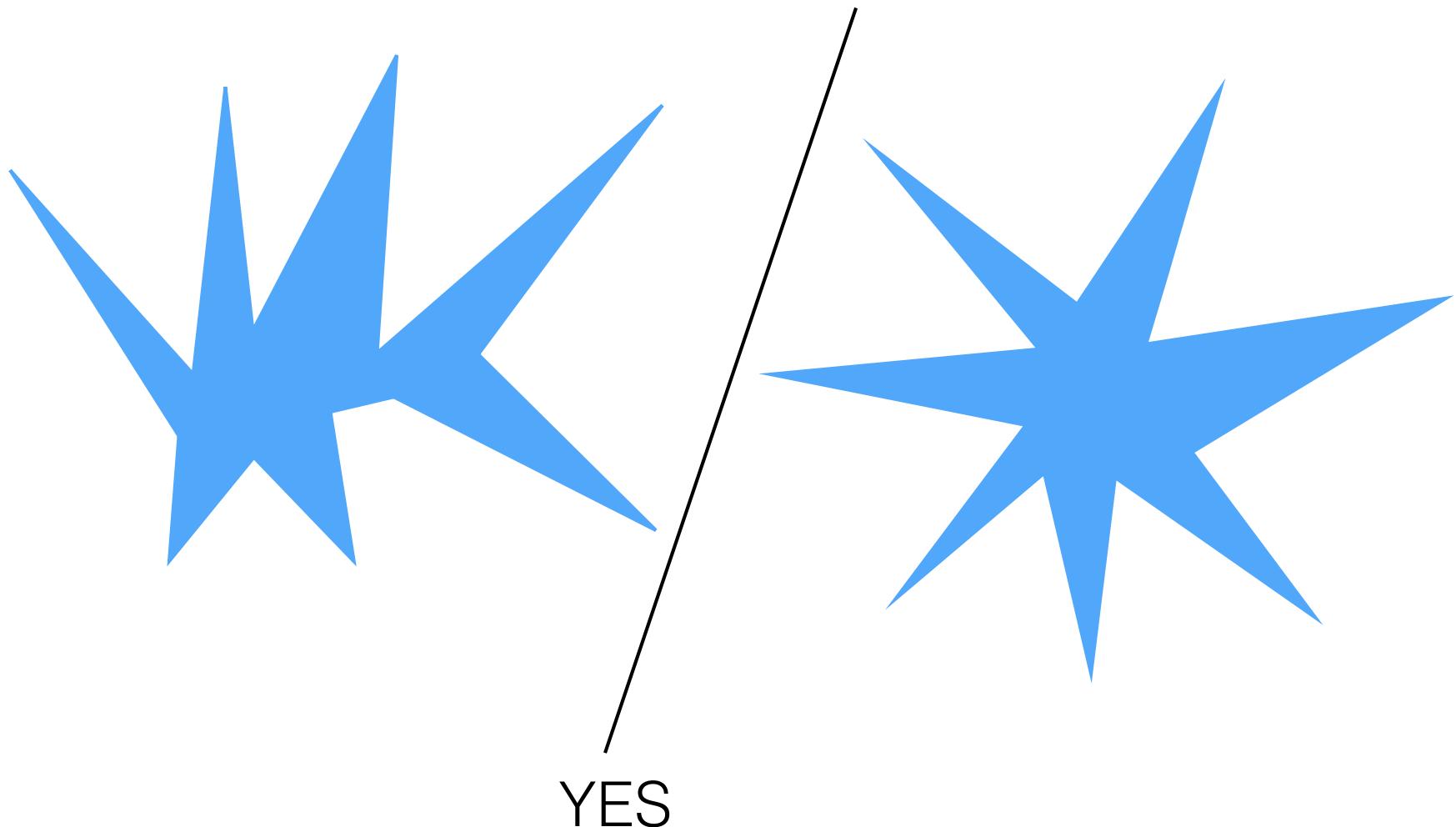
- Path planning: find (shortest) collision-free path from start to end



- The shortest path follows the CH(obstacle)
 - it is the shorter of the upper path and lower path

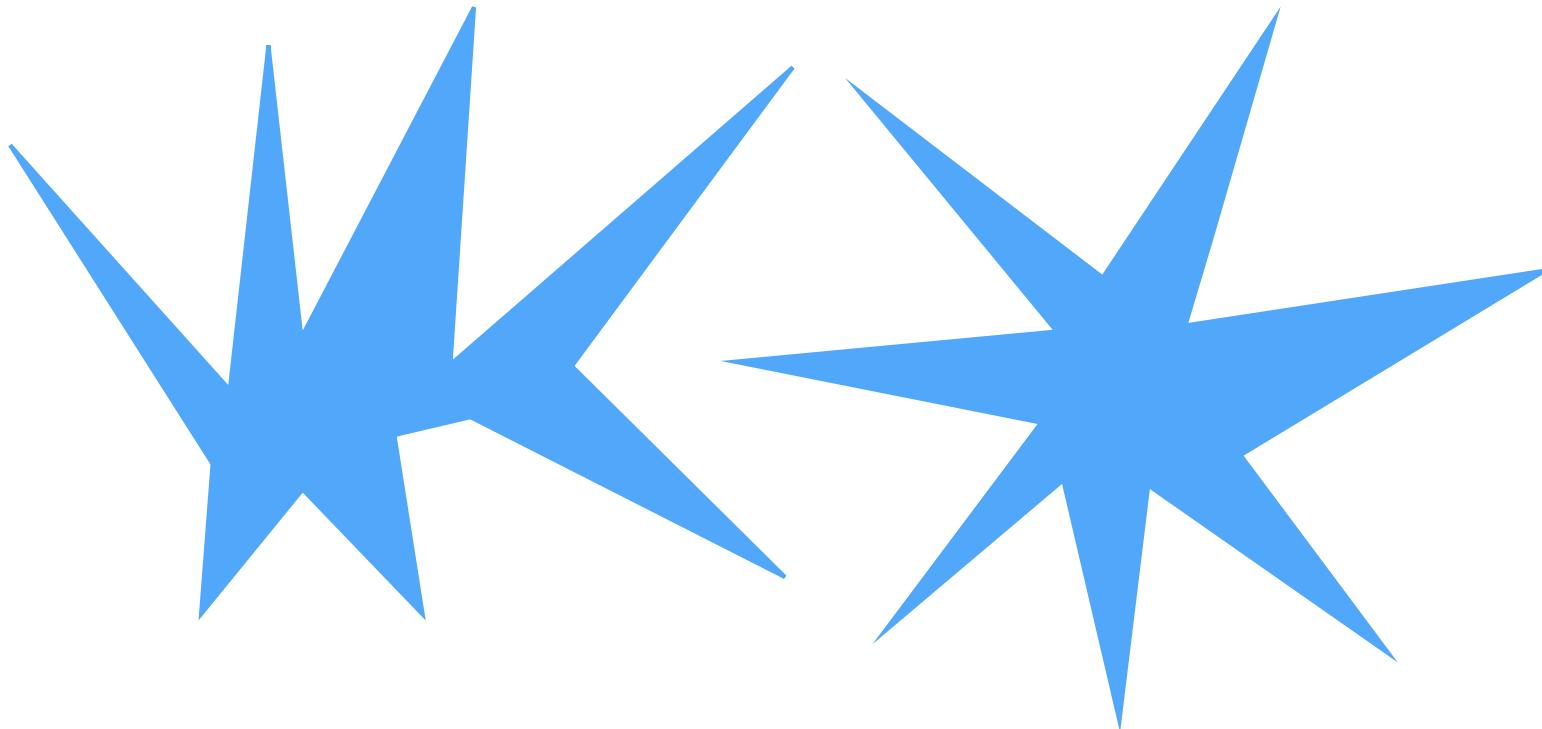
Applications

- Partitioning problems
 - does there exist a line separating two objects?



Applications

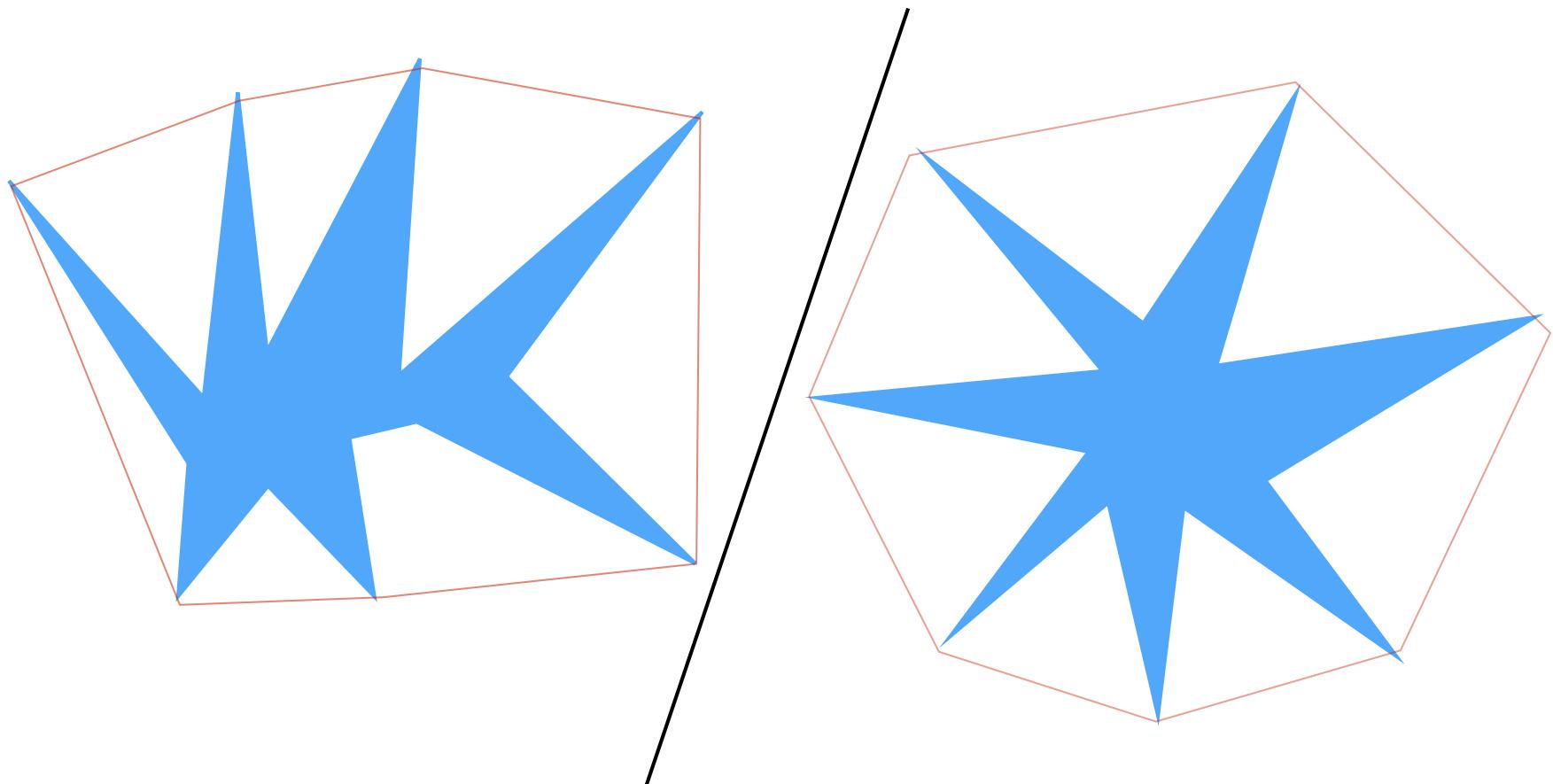
- Partitioning problems
 - does there exist a line separating two objects?



NO

Applications

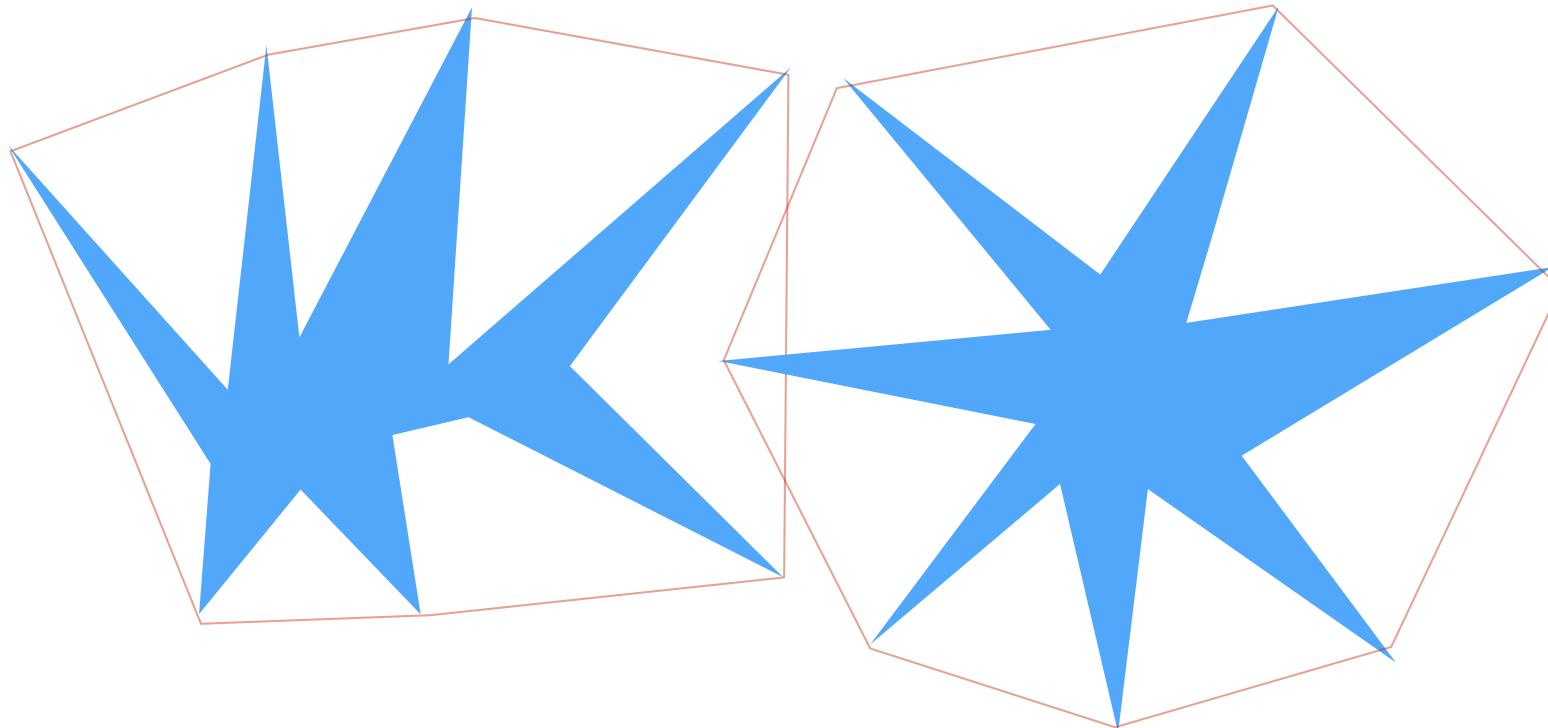
- Partitioning problems
 - does there exist a line separating two objects?



YES

Applications

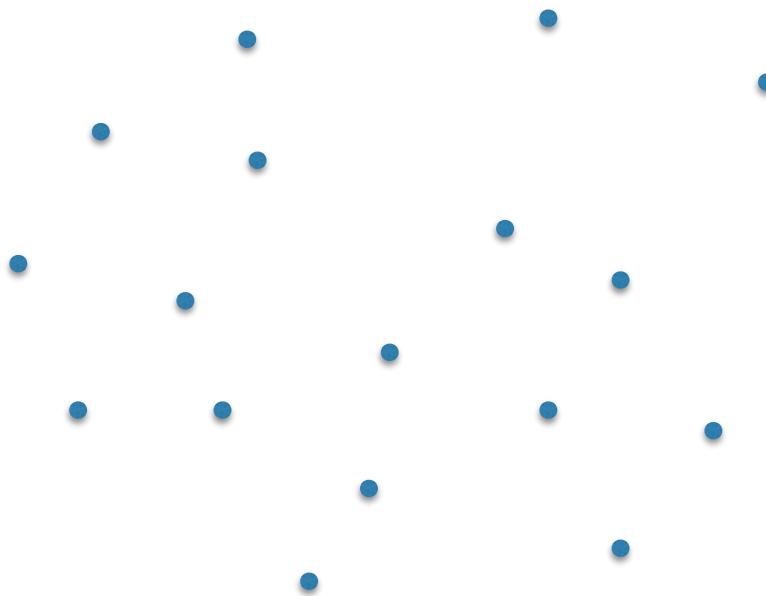
- Partitioning problems
 - does there exist a line separating two objects?



NO

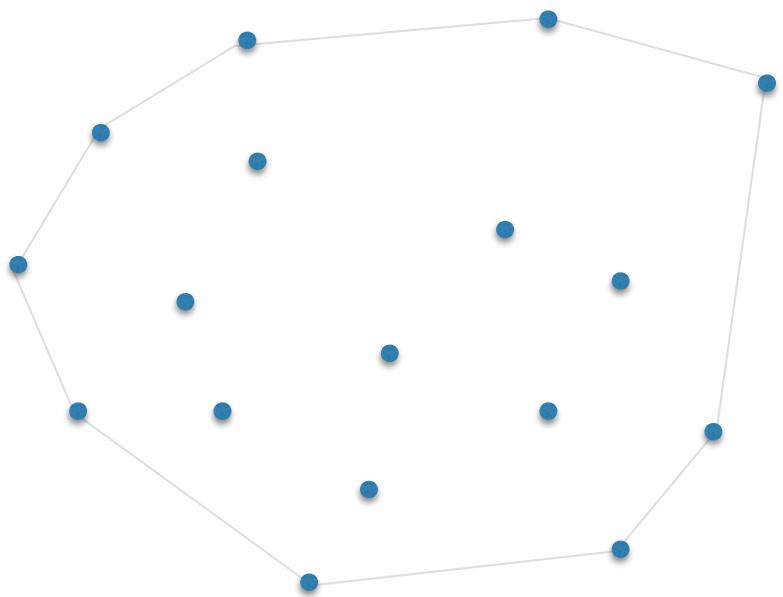
Applications

- Find the two points in P that are farthest away

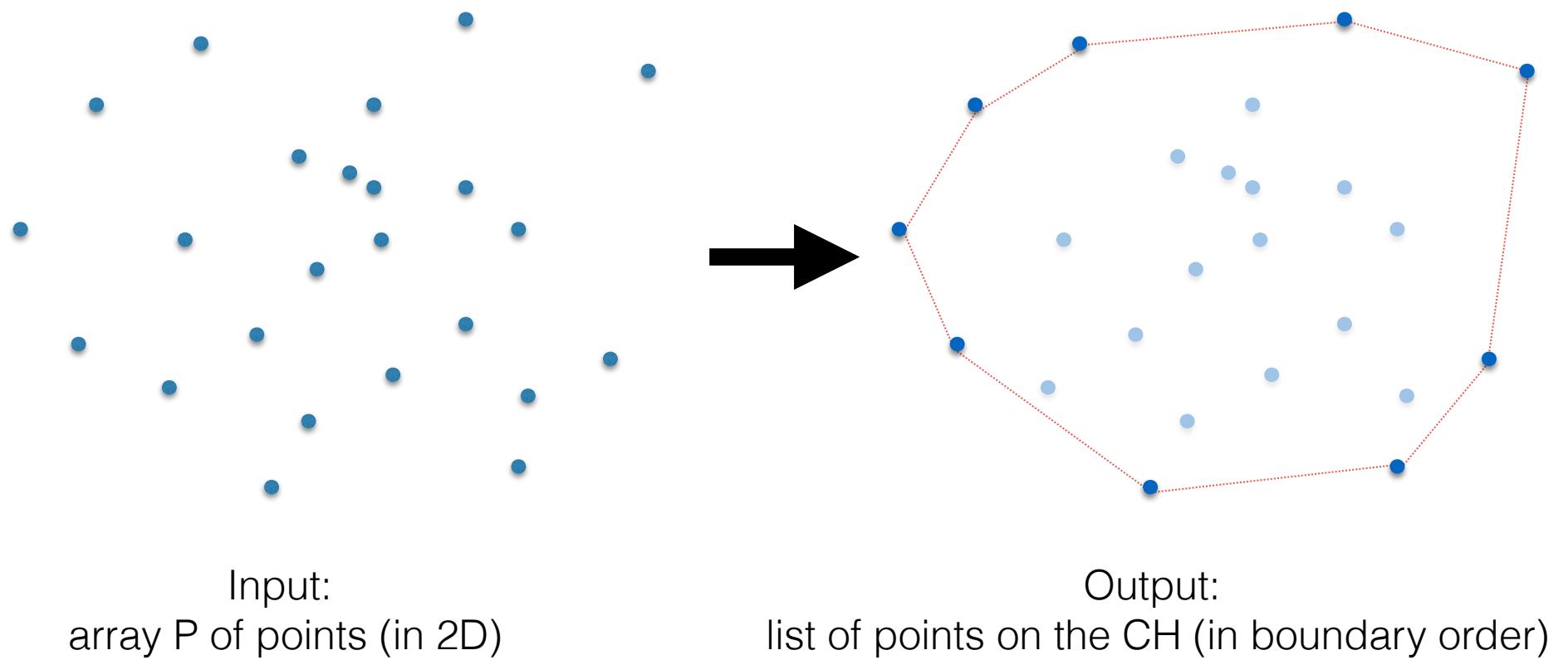


Applications

- Find the two points in P that are farthest away



So, we want to compute the convex hull



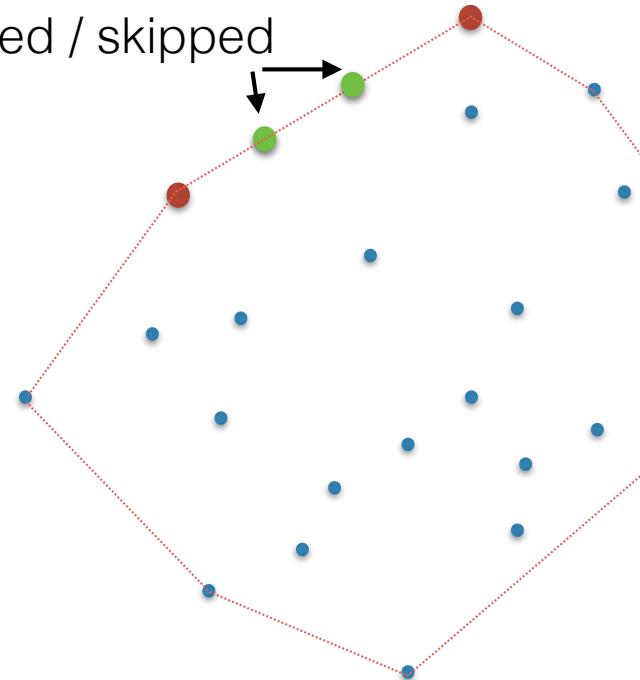
Convex Hull Variants

Several types of convex hull output are conceivable

- **all** points on the hull
- **only non-collinear** points

- in **boundary** order
- in **arbitrary** order

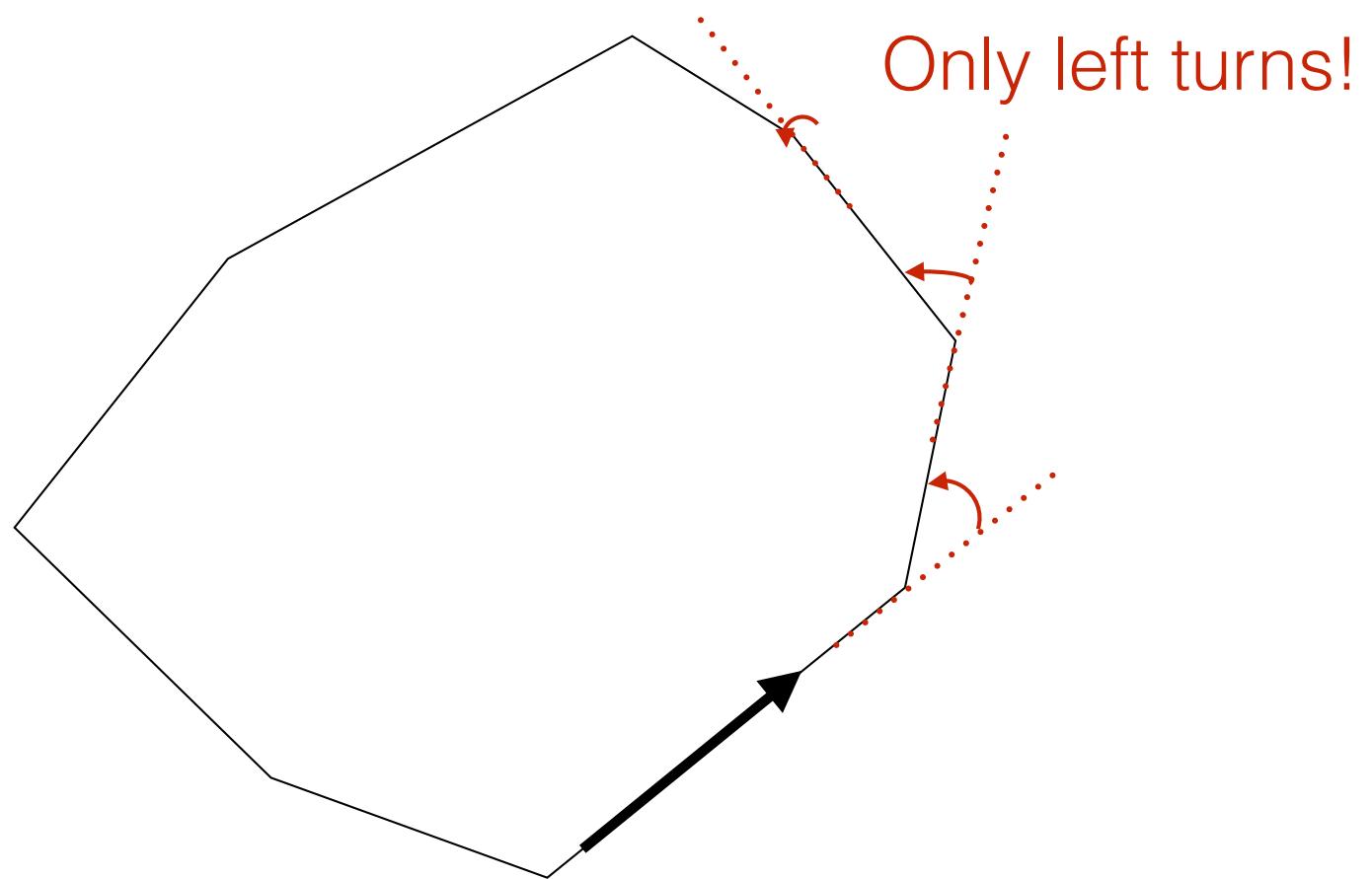
can be included / skipped

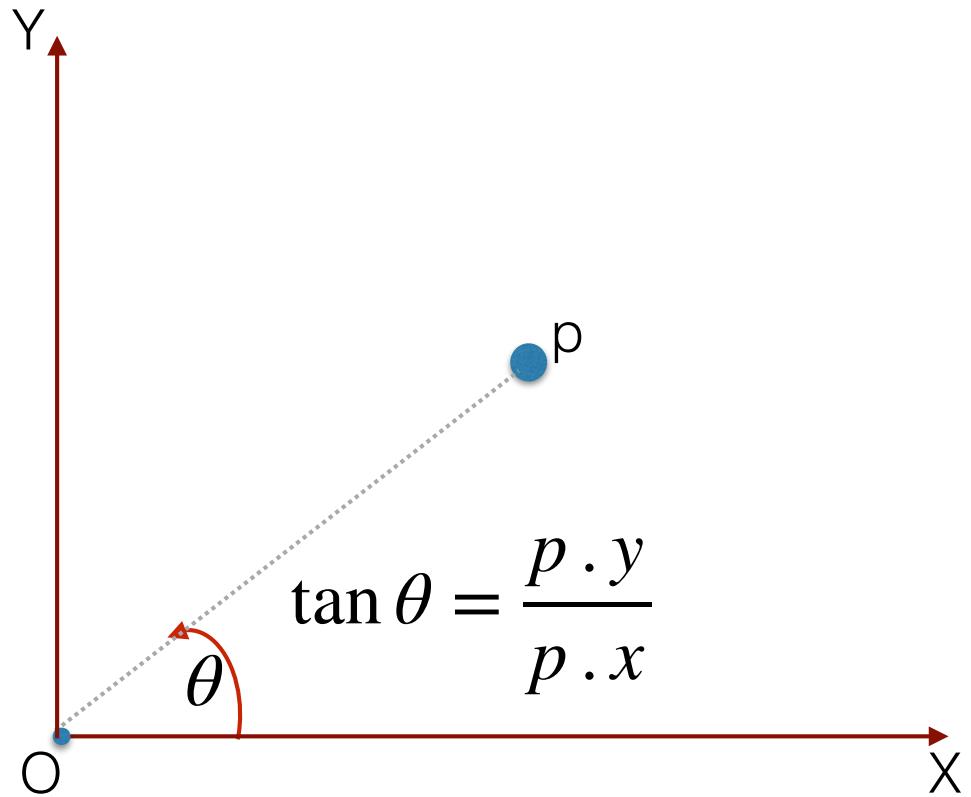
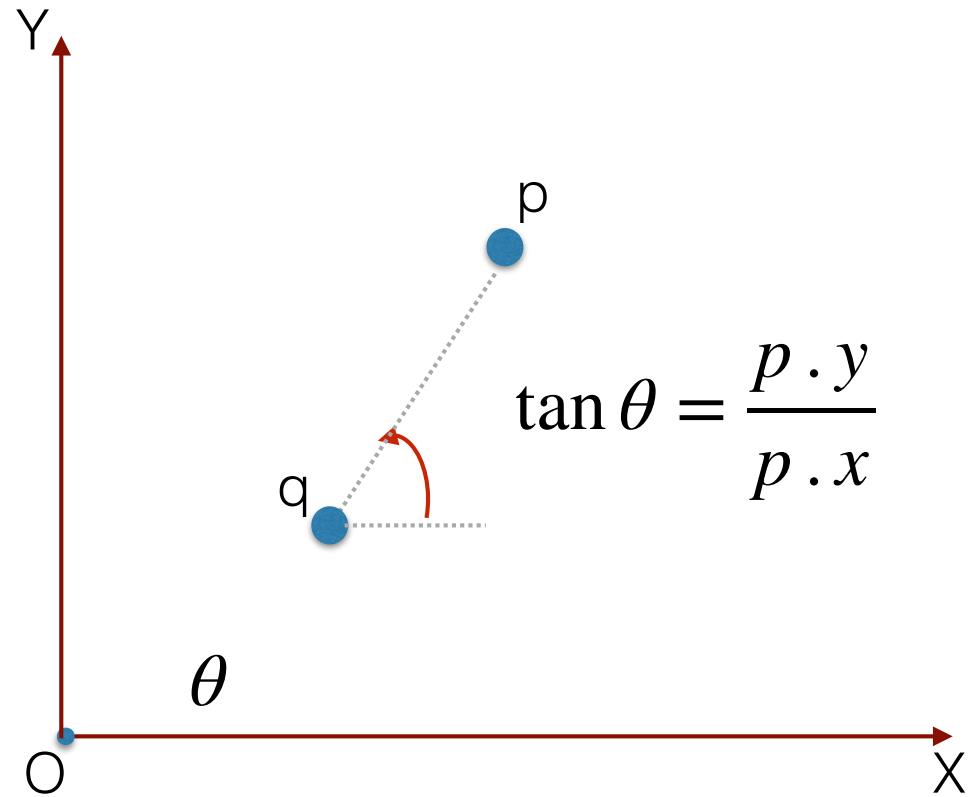


- It may seem that computing in boundary order is harder. It is known that identifying the points on the eCH has a lower bound of $\Omega(n \lg n)$. Therefore sorting is not the bottleneck.

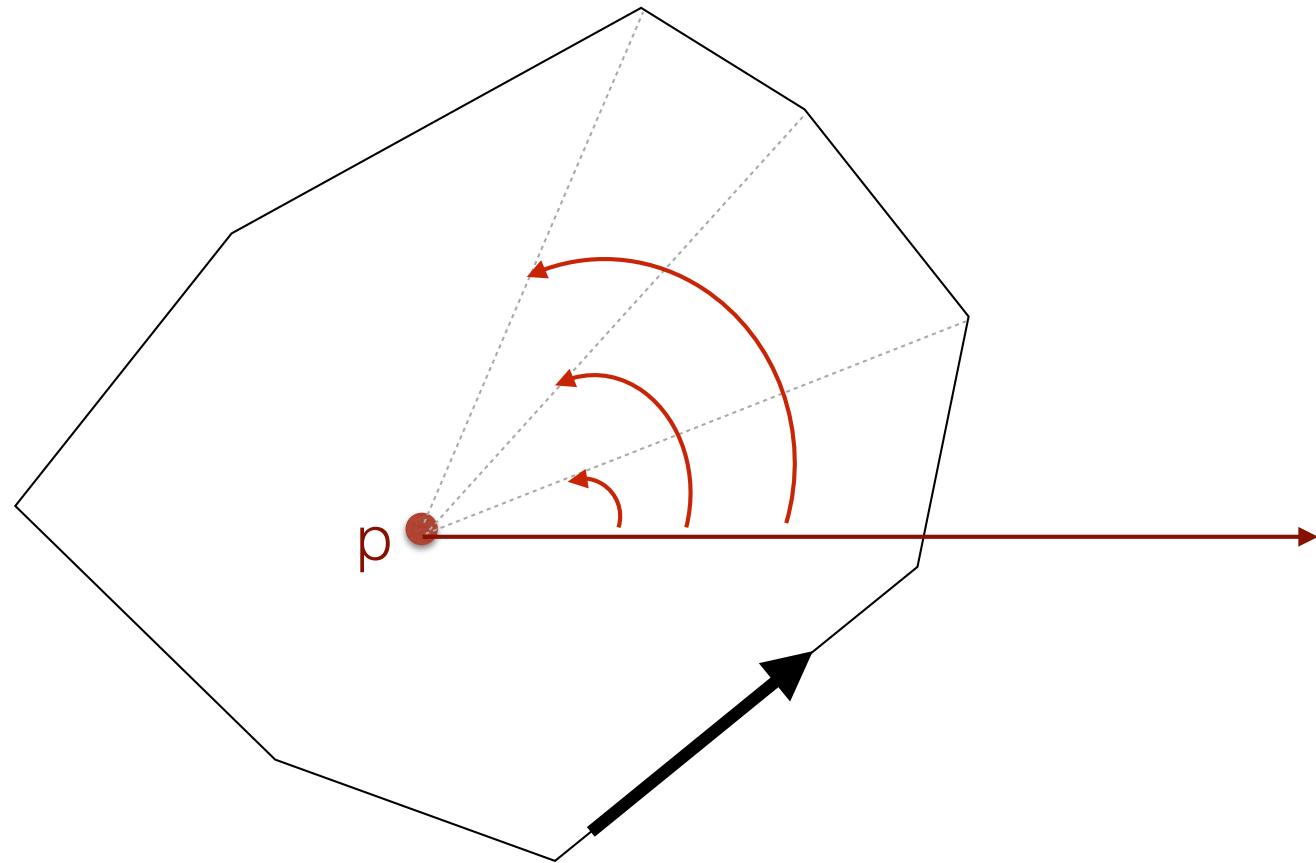
Convex Hull:
Some basic properties

Walk ccw along the boundary of a convex polygon



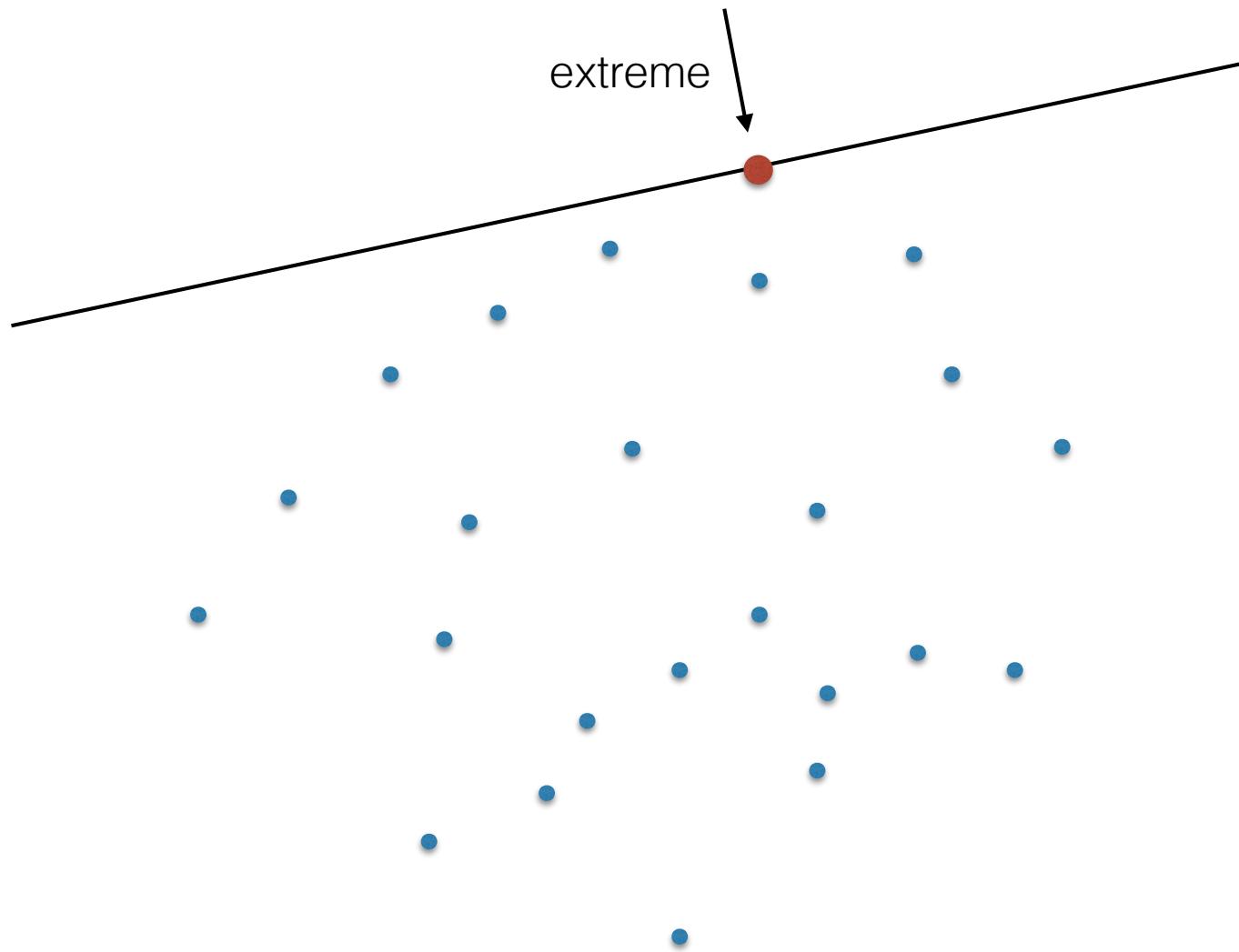


For any point p inside, the points on the boundary are in radial order around p



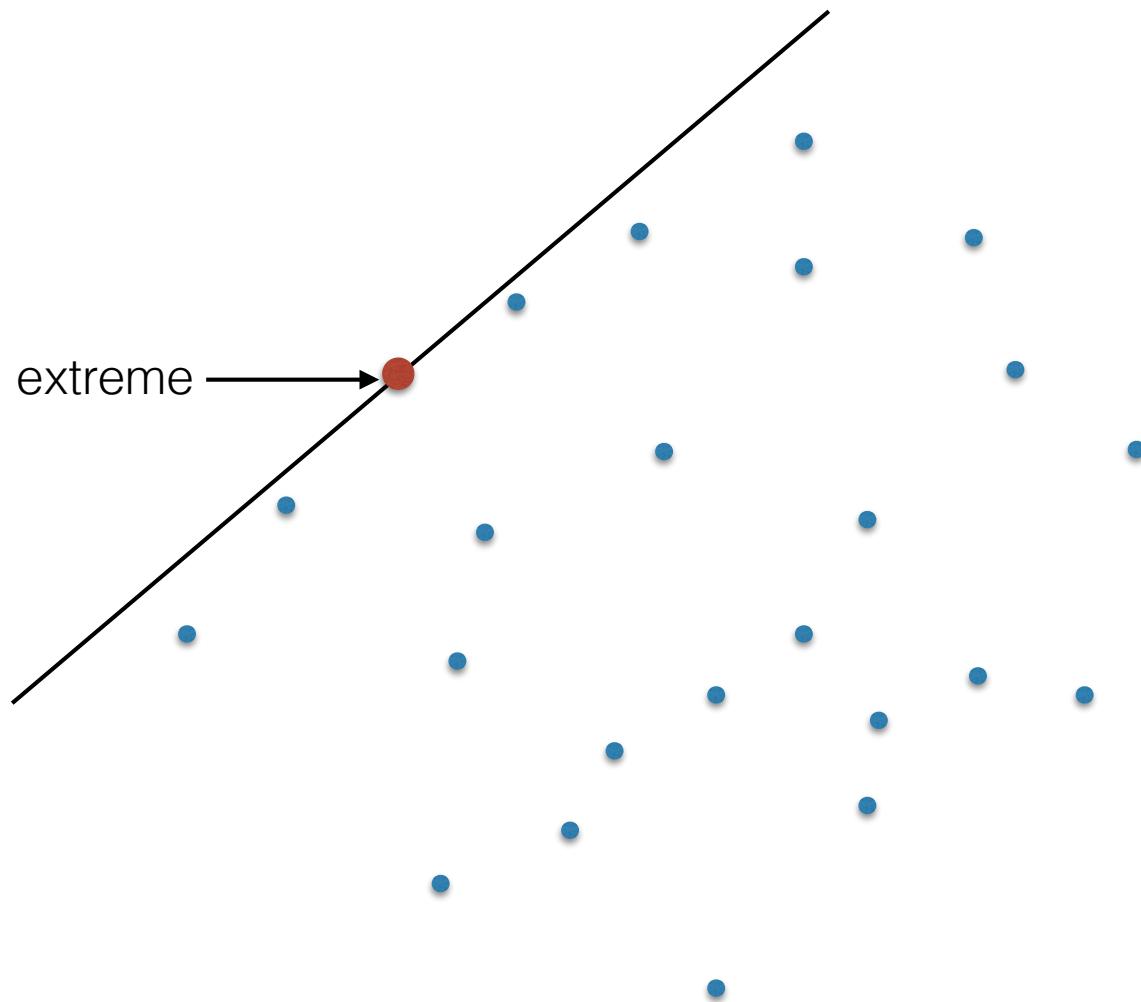
Extreme points

- A point p is called **extreme** if there exists a line l through p , such that all the other points of P are on the same side of l (and not on l)



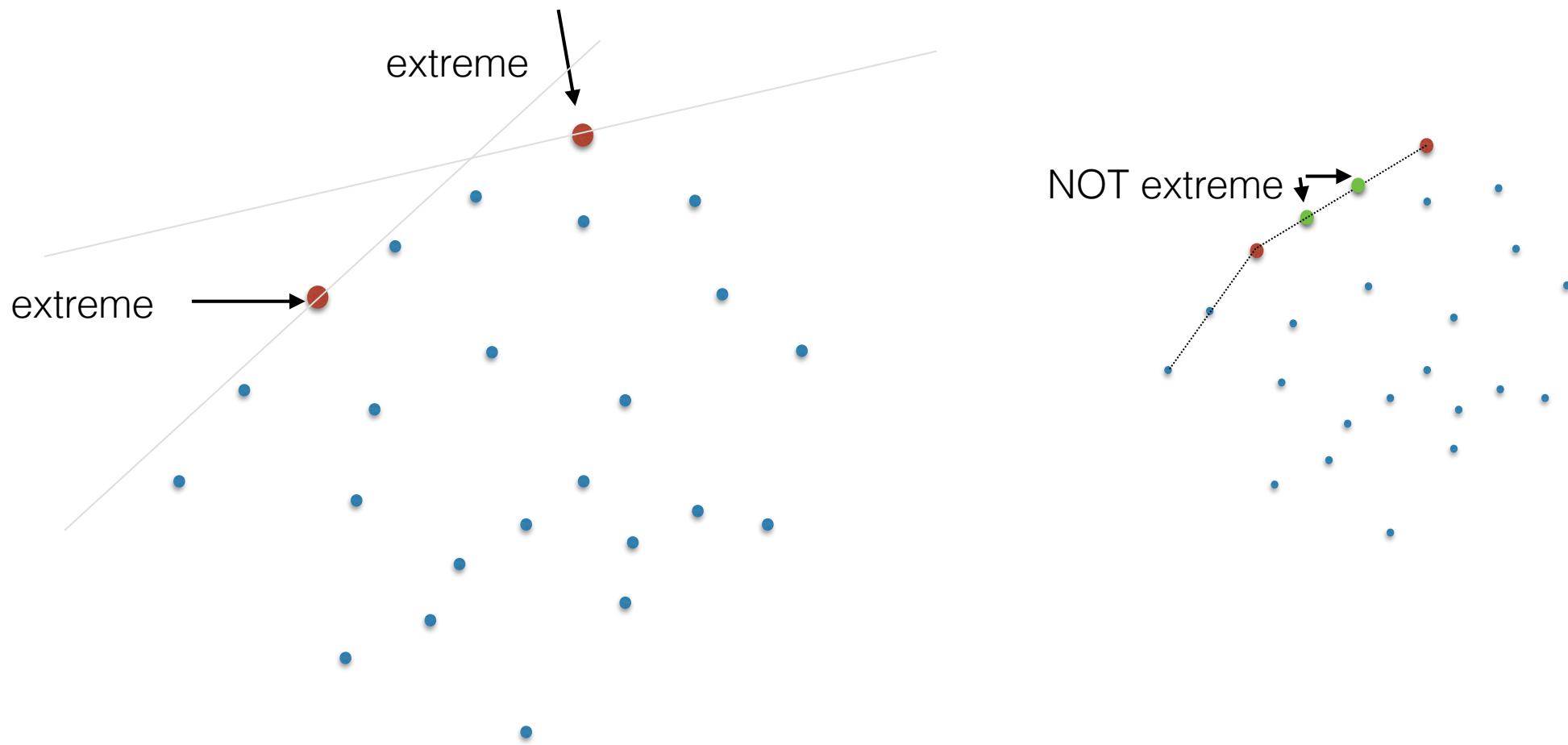
Extreme points

- A point p is called **extreme** if there exists a line l through p , such that all the other points of P are on the same side of l (and not on l)



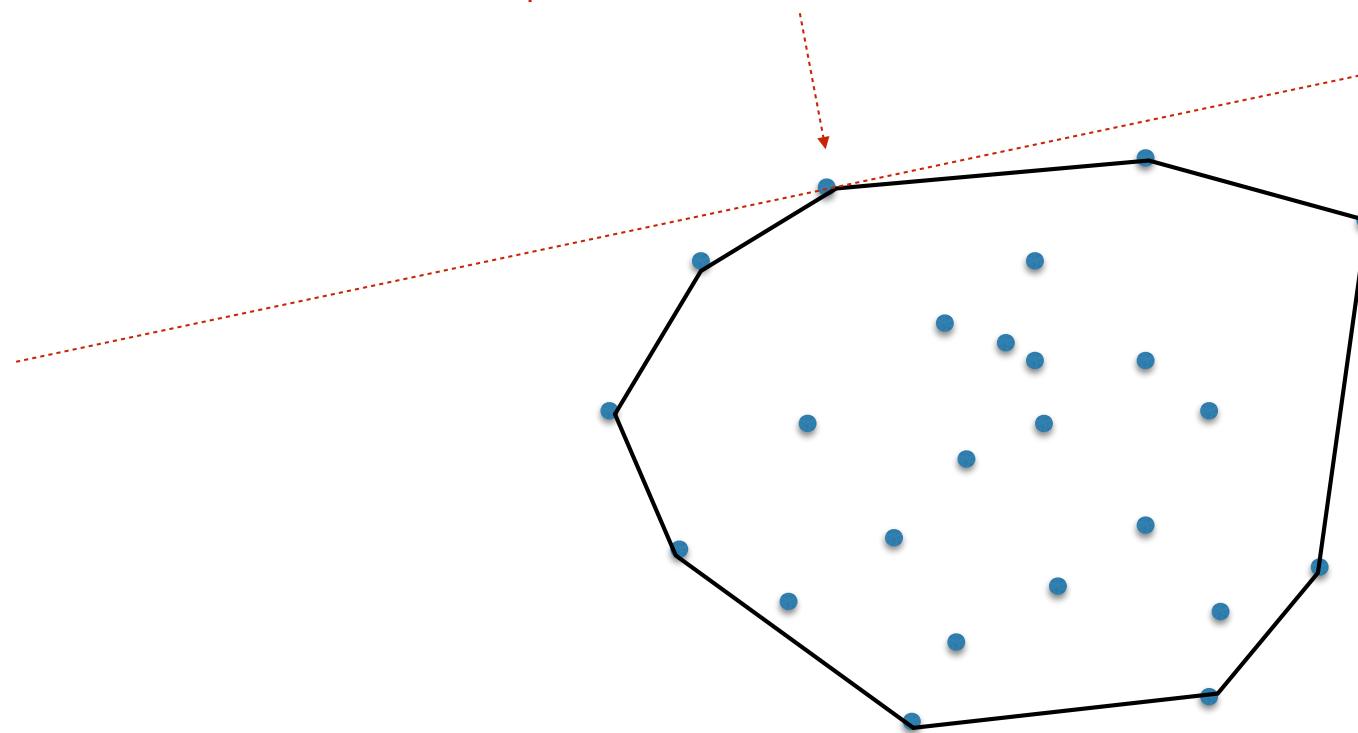
Extreme points

- A point p is called **extreme** if there exists a line l through p , such that all the other points of P are on the same side of l (and not on l)



A point is on the CH \iff it is extreme

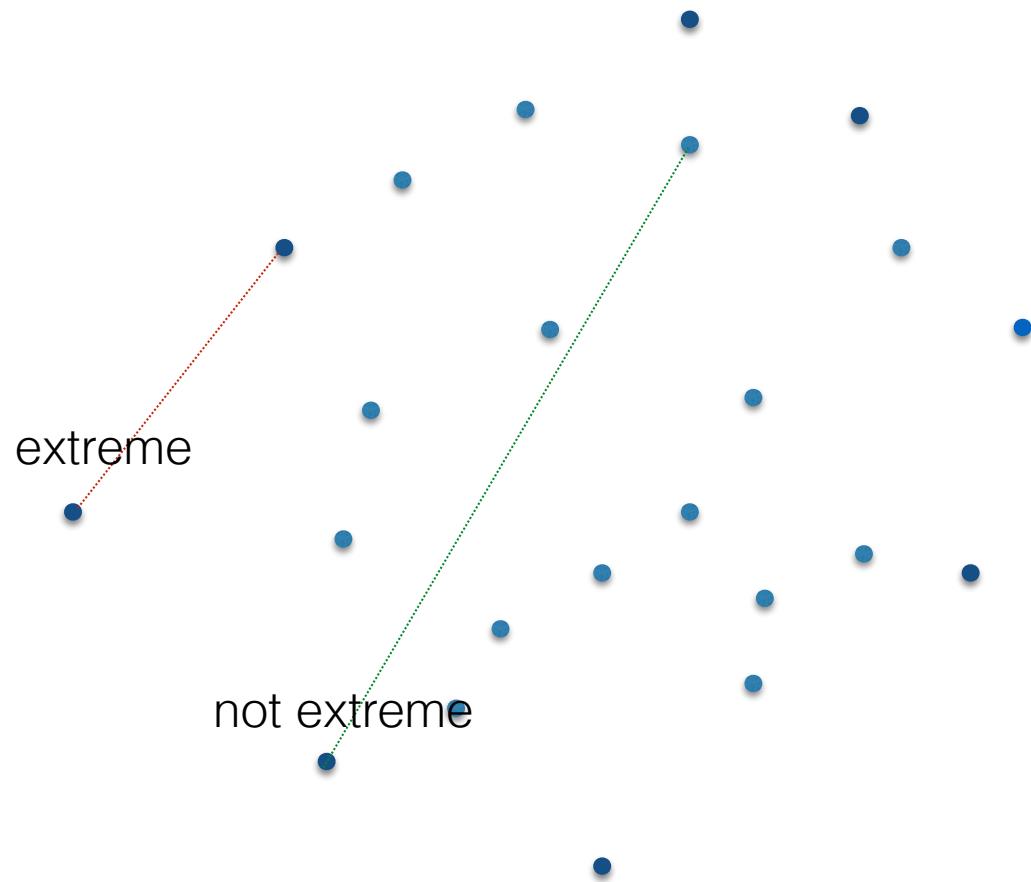
All points on the CH are extreme



All extreme points are on the CH

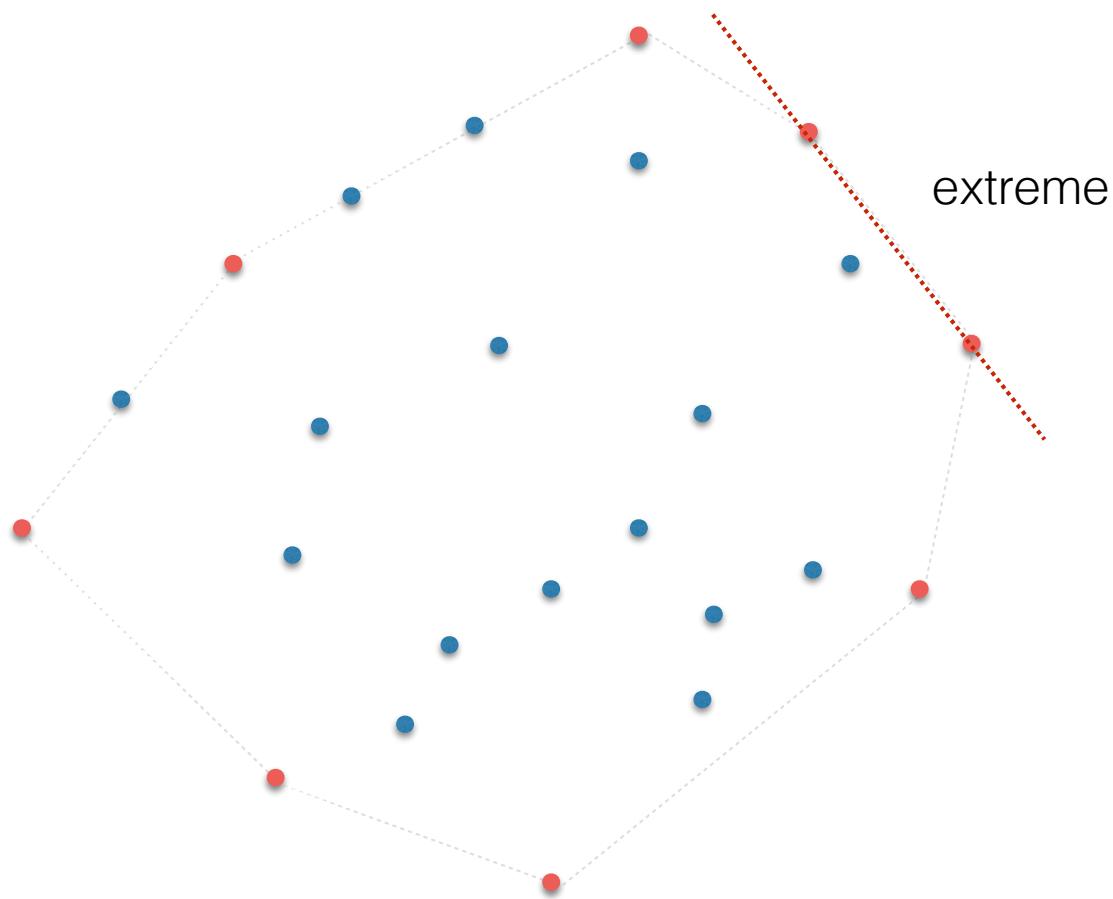
Extreme edges

- An edge (p_i, p_j) is **extreme** if all the other points of P are on one side of it (or on)



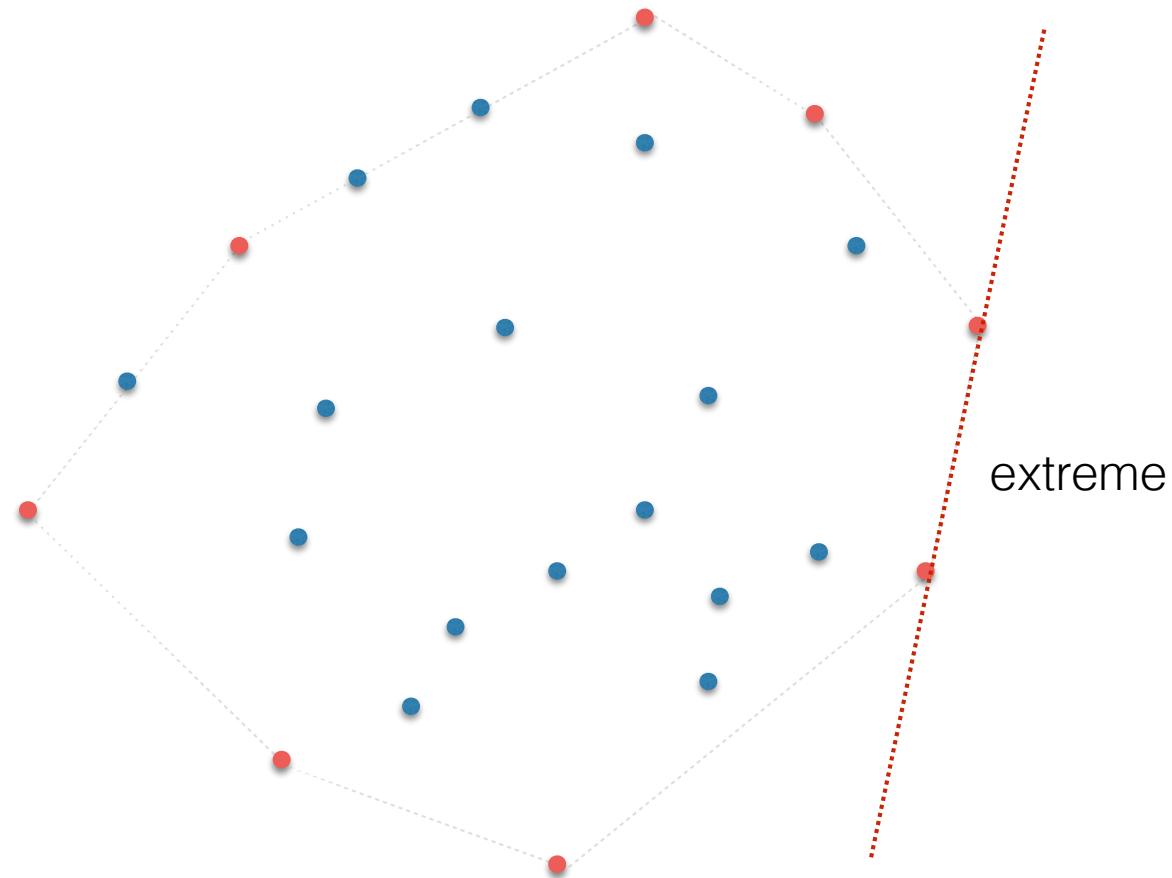
Extreme edges

- An edge (p_i, p_j) is **extreme** if all the other points of P are on one side of it (or on)



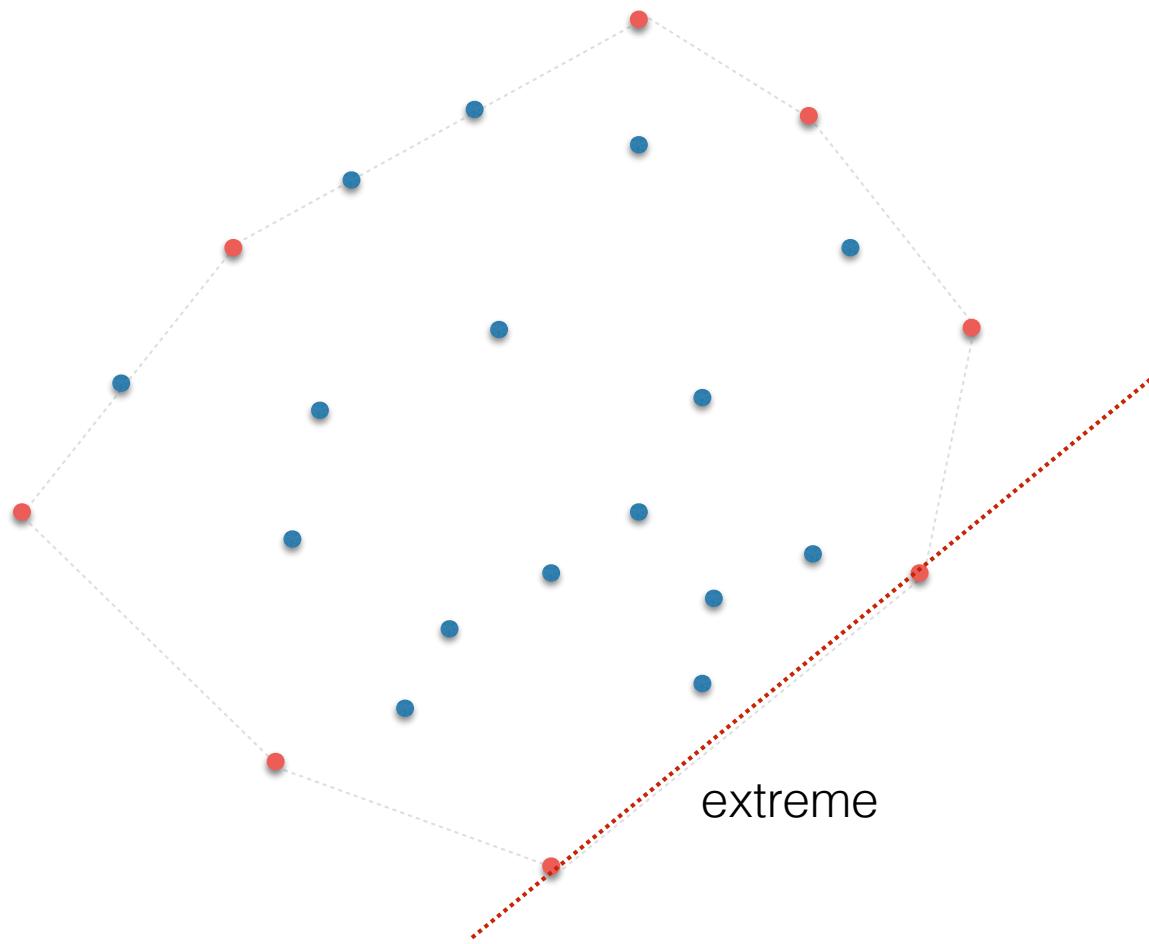
Extreme edges

- An edge (p_i, p_j) is **extreme** if all the other points of P are on one side of it (or on)



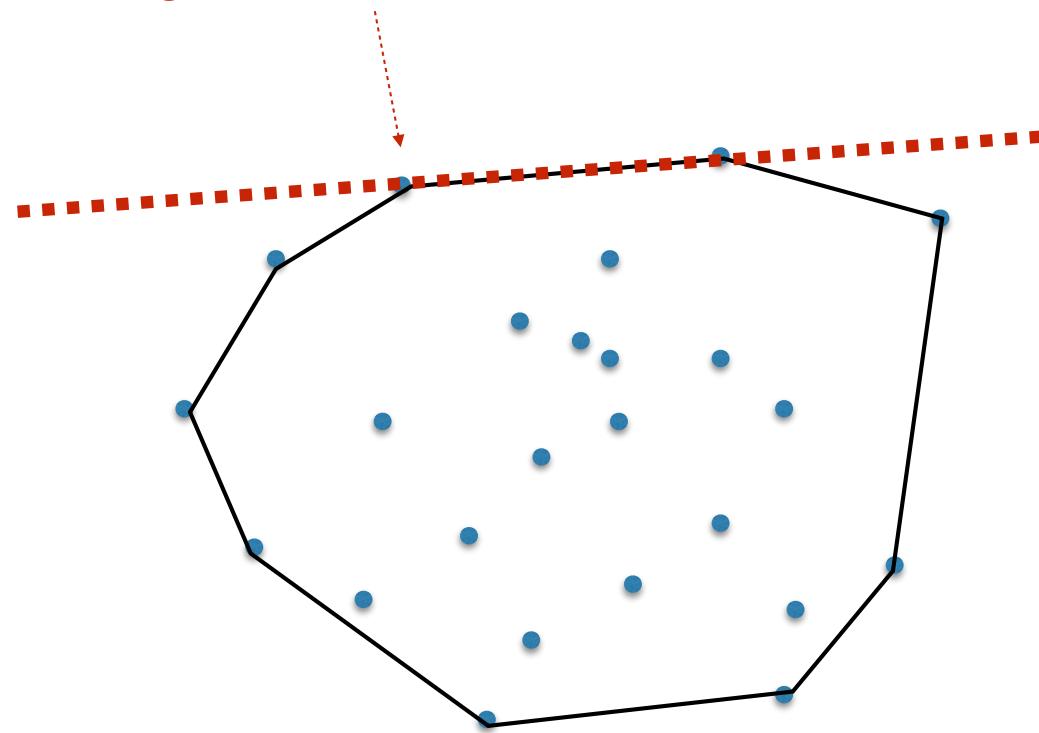
Extreme edges

- An edge (p_i, p_j) is extreme if all the other points of P are on one side of it (or on)



An edge is on the CH \iff it is extreme

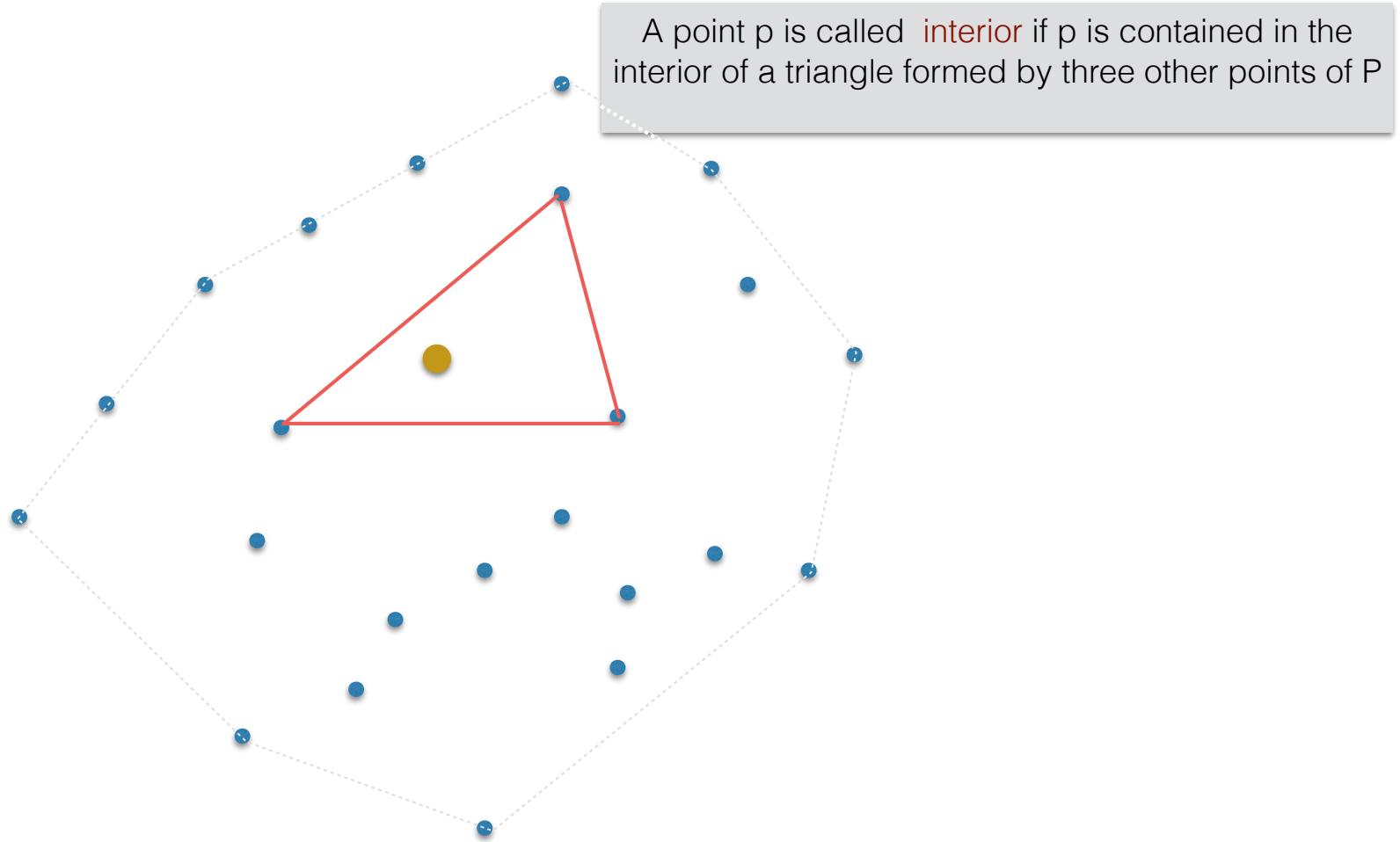
All edges on the CH are extreme



All extreme edges are on the CH

Interior points

- p interior $\iff p$ **not** on the CH



Convex hull properties: Summary

- Walking counter-clockwise on the boundary of the CH you make only left turns
- Consider a point p inside the CH. Then the points on the boundary of the CH are encountered in sorted radial order around p
- CH consists of extreme points and edges
 - point is extreme \iff it is on the CH
 - (p_i, p_j) form an edge on the CH \iff edge (p_i, p_j) is extreme
 - point p is interior \iff p not on the CH

Algorithm: Brute force

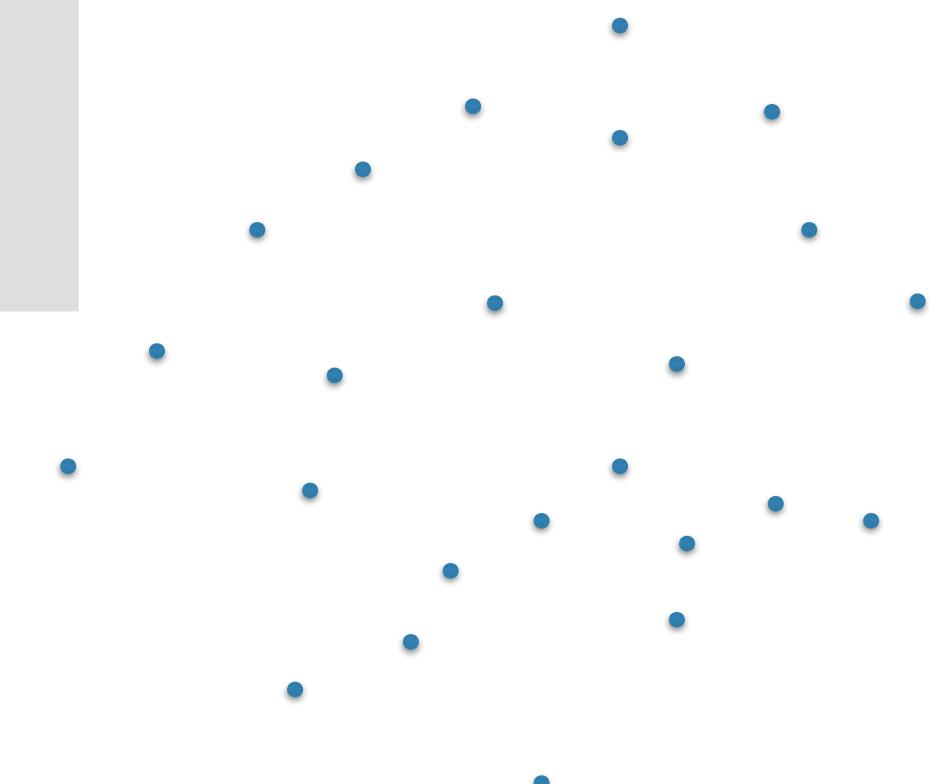
Algorithm: Brute force

Idea: Find extreme edges

Algorithm (input P)

- for all distinct pairs (p_i, p_j)
 - check if edge (p_i, p_j) is extreme

- Analysis?



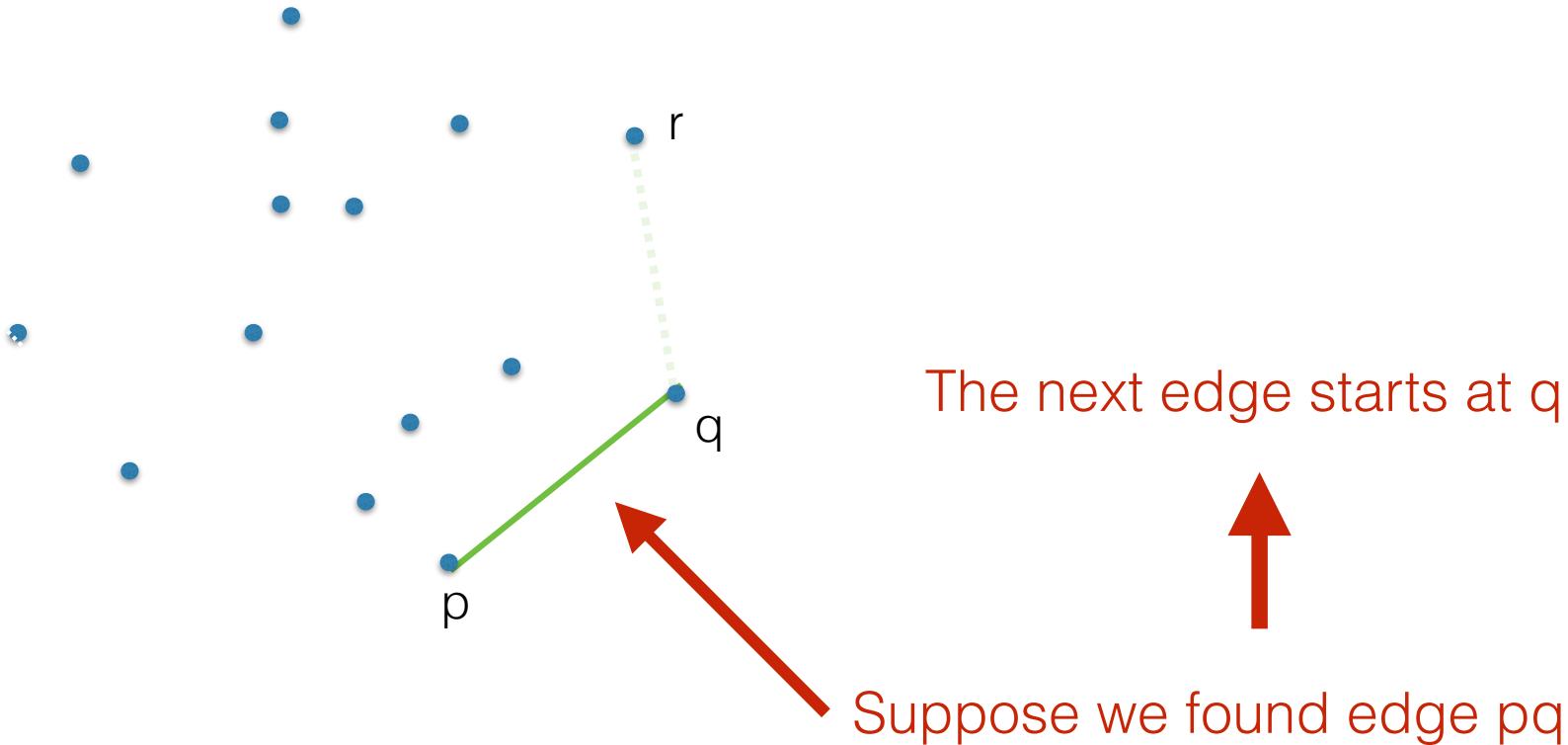
Algorithm: Gift wrapping

◆ by Chand and Kapur [1970].

Algorithm: Gift wrapping

We know that CH consists of extreme edges, and each edge shares a vertex with next edge

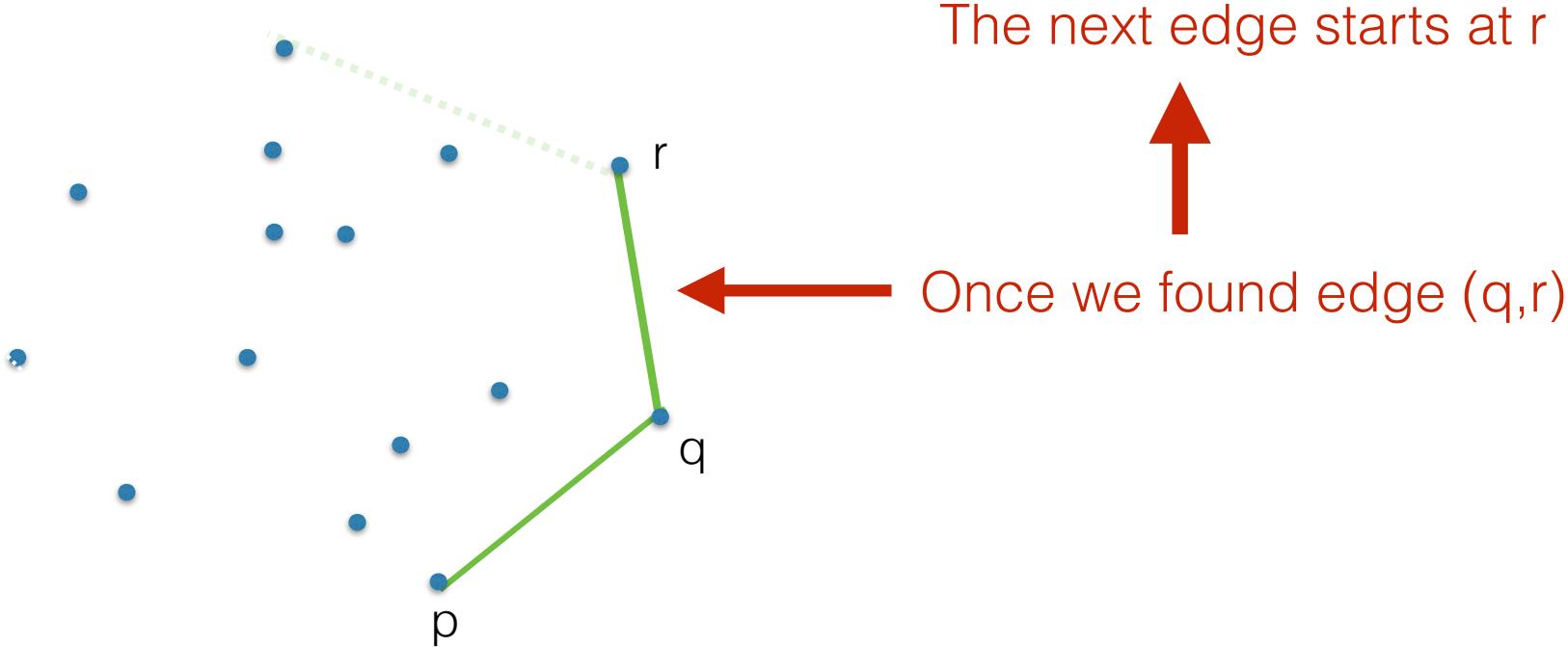
Idea: use an edge to find the next one



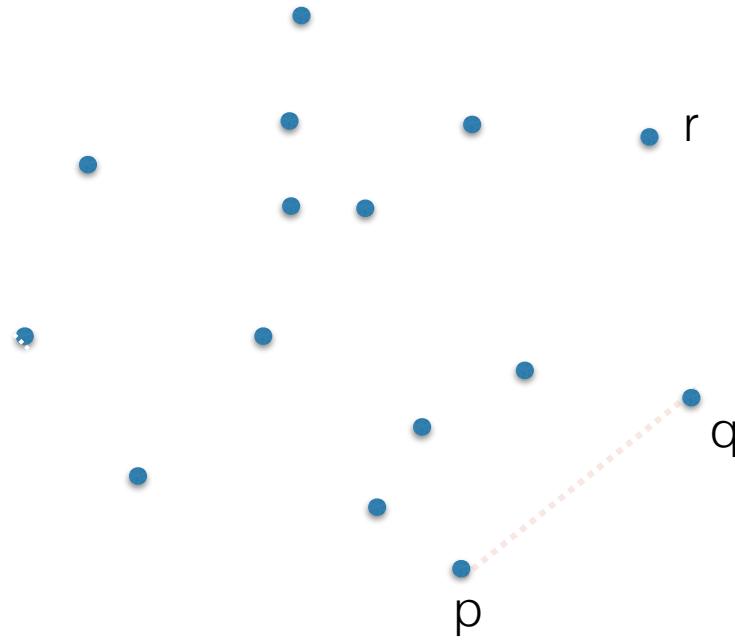
Algorithm: Gift wrapping

We know that CH consists of extreme edges, and each edge shares a vertex with next edge

Idea: use an edge to find the next one

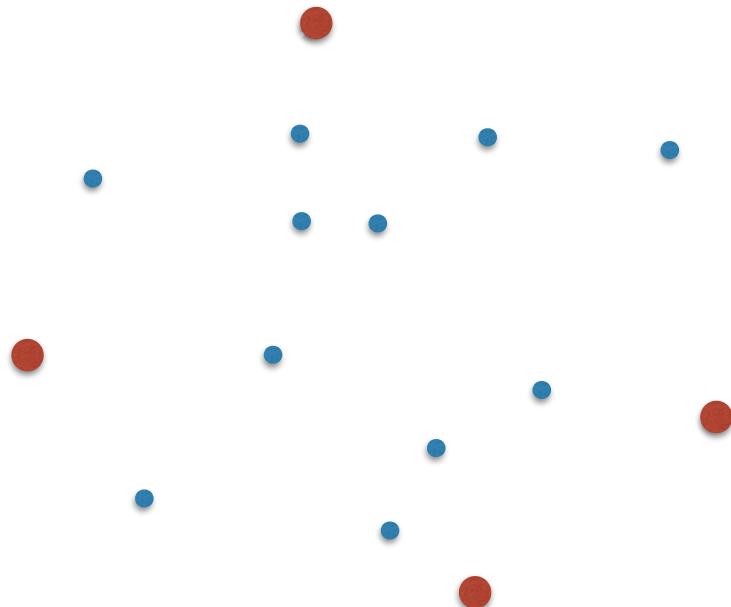


How to find an extreme edge to start from?



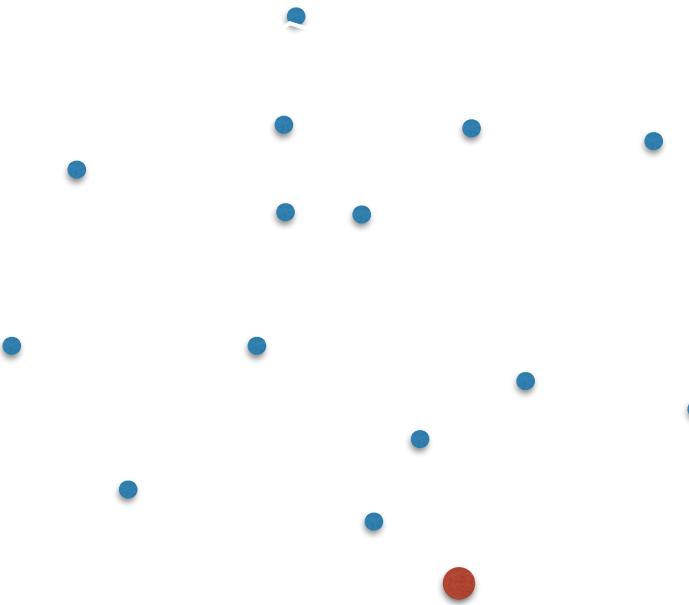
Start from a point p that is guaranteed to be in CH

- Claim
 - point with minimum x-coordinate is extreme
 - point with maximum x-coordinate is extreme
 - point with minimum y-coordinate is extreme
 - point with maximum y-coordinate is extreme
- Can you justify why?



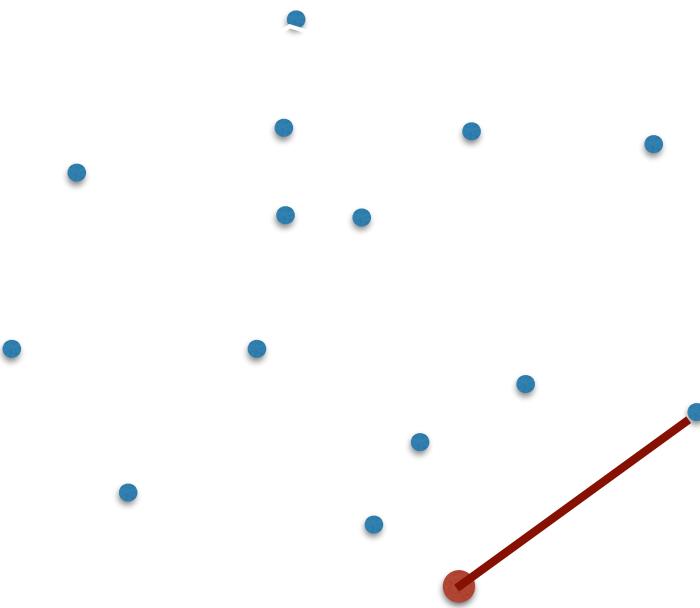
Algorithm: Gift wrapping

- Start from bottom-most point (if more than one, pick right most)



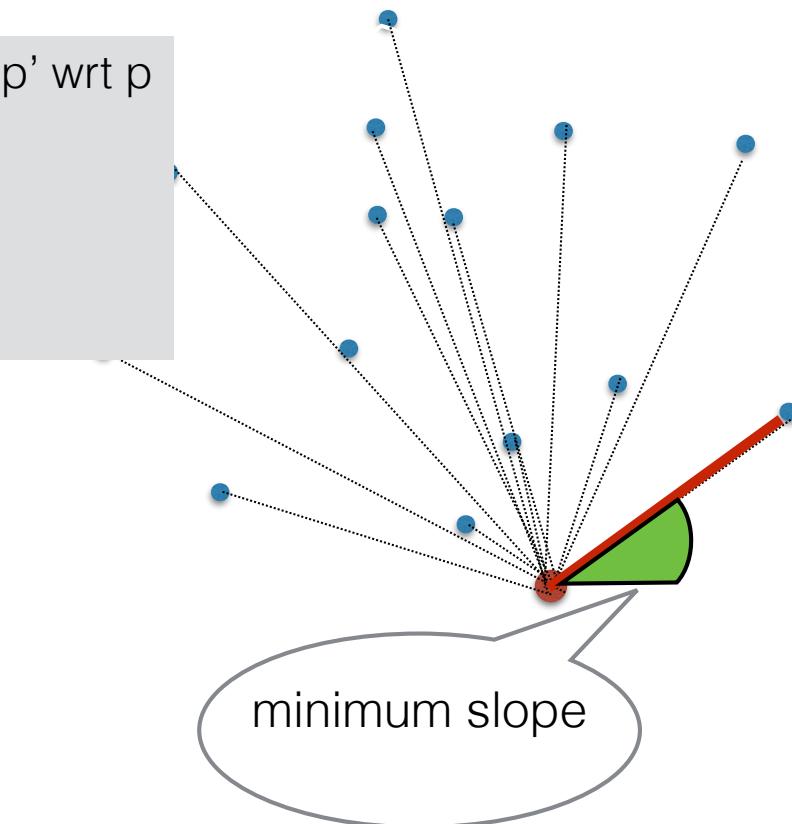
Algorithm: Gift wrapping

- Start from bottom-most point (if more than one, pick right most)
- Find first edge: how??



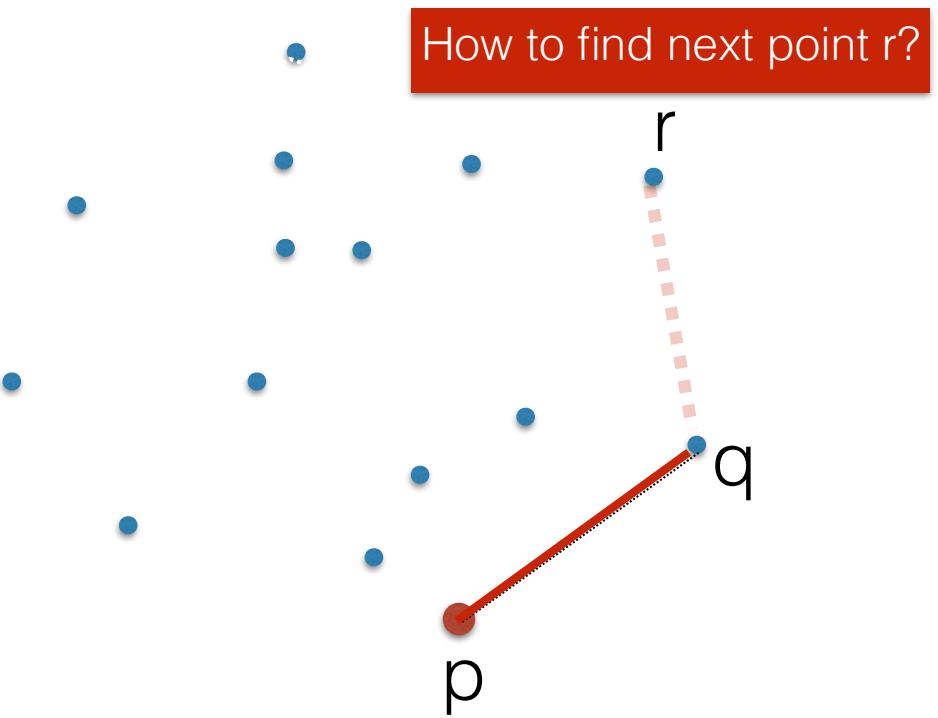
Algorithm: Gift wrapping

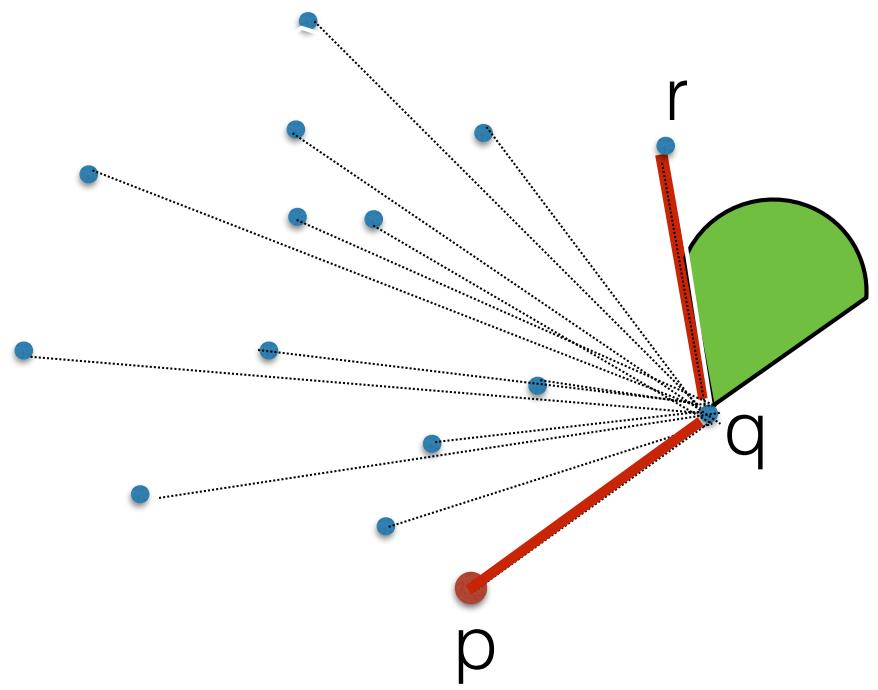
- Start from bottom-most point (if more than one, pick right most)
- Find first edge:
 - for each point p' : compute slope of p' wrt p
 - let q = point with smallest slope
//claim: pq is extreme edge
 - output (p, q) as first edge



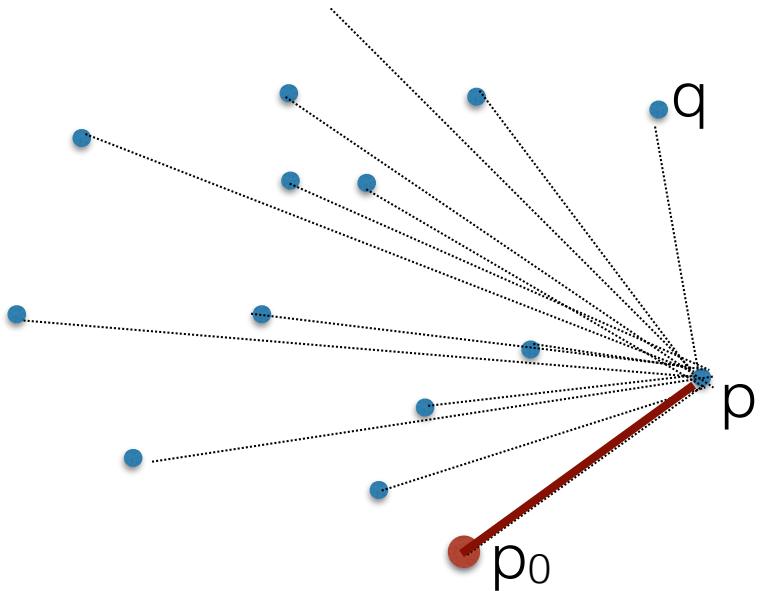
Algorithm: Gift wrapping

- Start from bottom-most point (if more than one, pick right most)
- Find first edge pq
- Repeat: find extreme edge from q





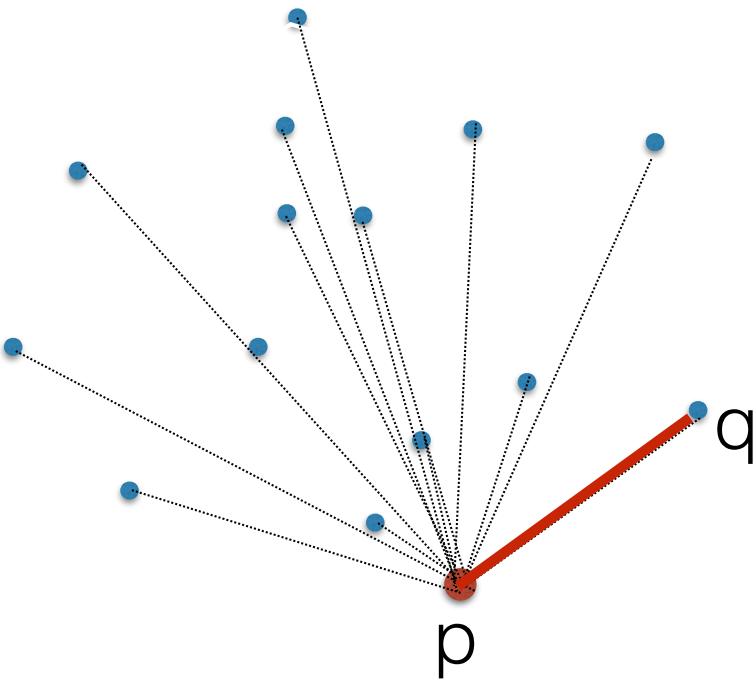
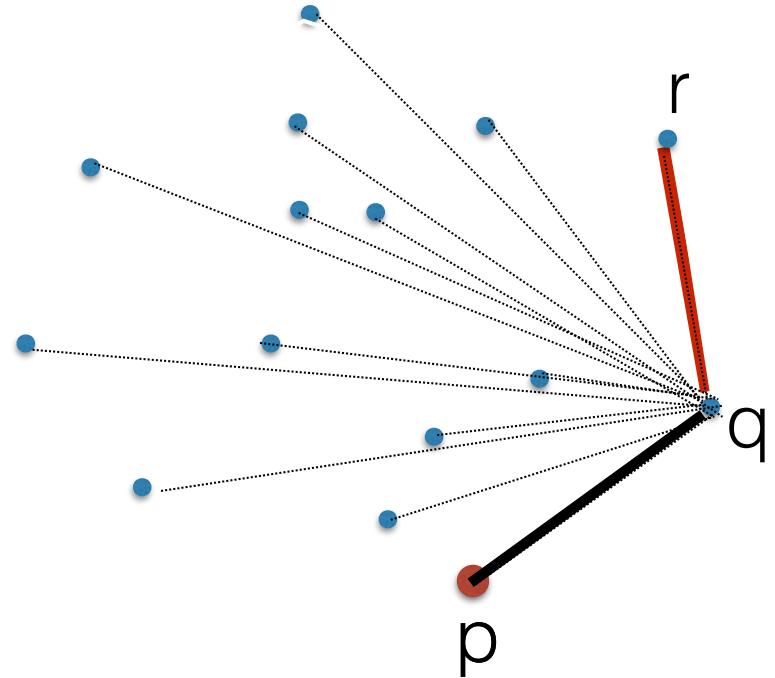
Algorithm: Gift wrapping



- Let p_0 = point with smallest y-coord (if more than one, pick right-most)
- Let p = point with smallest slope wrt p_0
- add points p_0, p to the CH
- repeat
 - let q = point with smallest slope wrt prev edge on the hull
 - add point q to the CH
- until $q = p_0$

Can be implemented with left()

- q is the point that appears to be furthest to the right to someone standing at p



- initialize q to be an arbitrary point
- for each point u ($u \neq q$):
 - if $\text{left}(p, u, q)$: $q = u$

Class work

- Simulate Gift-Wrapping on an arbitrary (small) set of points
- What are configurations of points that cause troubles for Gift Wrapping?
(referred to as **degenerate cases**)
- Running time: Express function of n and k , where k is the output size
(number of points on the convex hull)
 - How small/large can k be for a set of n points?
 - Show examples that trigger best/worst cases
 - Based on this, when is Gift-wrapping a good choice to compute CH
(i.e. when is it efficient)?

Gift wrapping summary

- Runs in $O(k \cdot n)$ time, where k is the size of the $\text{CH}(P)$
- Efficient if k is small:
 - For $k = O(1)$, it takes $O(n)$
- Not efficient if k is large:
 - For $k = O(n)$, Gift wrapping takes $O(n^2)$
- Faster algorithms are known
- Gift wrapping extends easily to 3D and for many years was the primary algorithm for 3D

Summary

- Brute force: $O(n^3)$
- Gift wrapping: $O(k \cdot n)$
 - output-size sensitive: $O(n)$ best case, $O(n^2)$ worst case
 - ◆ by Chand and Kapur [1970]. Extends to 3D and to arbitrary dimensions; for many years was the primary algorithm for higher dimensions
- Graham scan
- Quickhull
- incremental,
- divide-and-conquer
- $\Omega(n \lg n)$ lower bound