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Finding collinear points 

We’ll start with a warmup problem:


Problem: Given a set of n points in 2D, determine if there exist three points that 
are collinear. 


Come up with different solutions to this problem (and analyze/compare them).





Finding collinear points

Brute force:  


• for all distinct triplets of points pi, pj, pk


• check if they are collinear


• Correct? 


•  yes because it checks all triplets


• Worst-case running time:


•  chose 3 =  triplets


• checking if three points are collinear can be done in constant time 


==>  algorithm 


• Space:  O(1)

n Θ(n3)

O(n3)



• Correct?  


• if points a, b, c are collinear ==> (slope, intercept) of (a,b)  (b,c) and (a,c) are the same 


• Worst-case running time: 


• 


• Space: 


•  for L

Θ(n2) + sort(n2) = Θ(n2 lg n)

Θ(n2)



• Correct?  


• if points a, b, c are collinear ==> (slope, intercept) of (a,b)  (b,c) and (a,c) are the same 


• Worst-case running time: 


• using a balanced tree (like red-black tree, or AVL-tree, or…)


•  inserts => 


• Space: 


•  for BBST

Θ(n2) Θ(n2 lg n)

Θ(n2)



• Correct?  


• if points a, b, c are collinear ==> (slope, intercept) of (a,b)  (b,c) and (a,c) are the same 


• Worst-case running time: 


•  searches & inserts =>  If we assume O(1) for find(x). 

• Space: 


•  for hash table

Θ(n2) Θ(n2)

Θ(n2)

A hash table supports find(x), insert(x), delete(x)



Hashing

• Run time depends on how many other elements have same hash  


• O(1) on the average assuming a good hash function (spreads the keys uniformly) and  m = O(n). Worst-case is 
still O(n).


• O(1) expected worst-case can be achieved  with universal hashing (by choosing the hash function uniformly 
at random from a set of universal hash functions, i.e. which guarantee no collision with high probability)


Families of universal hash functions are known for integers


can be extended to primitive types (char, float, string)


• Summary:  does find(x) run in O(1) ?


theory: O(1) expected, could be O(n) worst case 


O(1) approximately true for many real world situations

Does find(x) run in O(1) ?



• In conclusion, this runs in  on the average,  assuming a good hash functionΘ(n2)



• Correct?  


• if points a, b, c are collinear ==> slope of b and c wrt a are equal 


• Worst-case running time: 


•  


• Space: 


•  for L

n × sort(n) = Θ(n2 lg n)

Θ(n)



• Problem: Given a set of n points in the plane, determine if any are collinear.


• Algorithms  


• brute force: 


• via sorting:  with  space 

• with BBST: same as above


• hashing:  with  space assuming good hash function


• smart sort:  with O(n) space


O(n3)

O(n2 lg n) O(n2)

O(n2) O(n2)

O(n2 lg n)

Summary

Can we do better?



p= (2,1)

Duality transforms of points and lines in ℝ2

y

x

D(p): y = 2x-1

p = (a, b) D(p) : y = ax − b

Definition: The duality transform is defined as:

l : y = ax − b D(l) : p = (a, b)



Write the duals for the following points

p = (1,1)

p = (3,5)

p = (−4,2)

p = (0,1)

Write the duals for the following lines:

y = 3x − 4

y = x − 1

y = 2x + 1

y = x



Properties

Lemma 1:  


•  and D(D(p)) = p D(D(l)) = l

p

D(p)



Properties

Lemma 2 [Incidence preserving]: 


• If  lies on a line , than  lies on p l D(l) D(p)

l
p

D(l)

D(p)



Properties

Lemma 3:


• l1 and l2 interect in point p ⟺ D(p) passses through D(l1) and D(l2)

l1

l2

p

D(l1)

D(l2)

D(p)



Lemma 4: 


q, r, s collinear <==>   intersect in a common pointD(q), D(r), D(s)

r

q

D(r)

D(s)

D(q)

D(l)

Properties

s

l



Are there 3 points that are collinear?

It is known how to compute the intersections of  lines in 
, where  is the nb. of intersections

n
O(n lg n) + k = O(n2) k = O(n2)

Are there 3 lines that intersect in one point?

And now back to our problem



• Problem: Given a set of n points in the plane, determine if any are collinear.


• Algorithms  


• brute force: 


• via sorting:  with space 

• with BBST: same 


• hashing:  with  space assuming good hash function


• smart sort:  with O(n) space


• And fastest solution: compute line intersections in the dual in 

O(n3)

O(n2 lg n) O(n2)

O(n2) O(n2)

O(n2 lg n)

O(n2)

Summary


