Computational Geometry
(csci3250)

Laura Toma

Bowdoin College

Finding collinear points

We’ll start with a warmup problem:

Problem: Given a set of n points in 2D, determine if there exist three points that
are collinear.

Come up with different solutions to this problem (and analyze/compare them).

Finding collinear points

Brute force:
- for all distinct triplets of points pi, pj, Pk

- check if they are collinear

- Correct?
yes because it checks all triplets
- Worst-case running time:
. n chose 3 = O(n°) triplets
- checking if three points are collinear can be done in constant time
==> O(n°) algorithm
« Space: O(1)

Via sorting

Algorithm 2
e initialize array L = empty
e for all distinct pairs of points p;, p;
— compute their line equation (slope, intercept) and add it to an array L
e sort array L by (slope, intercept)

e traverse L and if you find any 3 consecutive identical (s,i) — collinear

Correct?

if points a, b, ¢ are collinear ==> (slope, intercept) of (a,b) (b,c) and (a,c) are the same
Worst-case running time:

B(n?) + sort(n?) = O(n’*lgn)
Space:

O(n?) for L

With a binary search tree

Algorithm 3
e initialize BBST = empty
e for all distinct pairs of points p;, p;

— compute their line equation (s, i)

— insert (s,i) in BBST; if when inserting you find that (s,i) is already in the tree, you
got three collinear points and return true

e (if you ever get here) return false

Correct?

if points a, b, ¢ are collinear ==> (slope, intercept) of (a,b) (b,c) and (a,c) are the same
Worst-case running time:

using a balanced tree (like red-black tree, or AVL-tree, or...)

O(n?) inserts => O(n’lg n)
Space:

®(n?) for BBST

With hashing A hash table supports find(x), insert(x), delete(x)

Algorithm 4
e initialize HashTable = empty
e for all distinct pairs of points p;, p;

— compute their line equation (s, i)

— insert (s,i) in HashTable; if when inserting you find that (s,i) is already in the HT,
you got three collinear points and return true

e (if you ever get here) return false

Correct?

if points a, b, ¢ are collinear ==> (slope, intercept) of (a,b) (b,c) and (a,c) are the same
Worst-case running time:

®(n?) searches & inserts => O(n?) If we assume O(1) for find(x).
Space:

®(n?) for hash table

List<T>[] t;
int n;

Hashing

t

06 [Gm [Em E

c 8

a

Figure 5.1: An example of a chainedHashTable with n = 14 and

t.length = 16. In this example hash(x) =6

Does find(x) run in O(1) ?

Run time depends on how many other elements have same hash

O(1) on the average assuming a good hash function (spreads the keys uniformly) and m = O(n). Worst-case is
still O(n).

O(1) expected worst-case can be achieved with universal hashing (by choosing the hash function uniformly
at random from a set of universal hash functions, i.e. which guarantee no collision with high probability)

Families of universal hash functions are known for integers

can be extended to primitive types (char, float, string)

Summary: does find(x) run in O(1) ?
theory: O(1) expected, could be O(n) worst case

O(1) approximately true for many real world situations

With hashing

Algorithm 4
e initialize HashTable = empty
e for all distinct pairs of points p;, p;

— compute their line equation (s, i)

— insert (s,i) in HashTable; if when inserting you find that (s,i) is already in the HT,
you got three collinear points and return true

e (if you ever get here) return false

« In conclusion, this runs in ®(n°) on the average, assuming a good hash function

A different way to sort

Algorithm 5
e for every point p;

— set array L = empty
— for every point p; (with p;! = p;)
* compute slope of p; wrt to p; and add it to array L
— sort L
— traverse L and if you find two consecutive points that have same slope, they are

collinear with p; so return true

e (if you get here) return false

Correct?

if points a, b, ¢ are collinear ==> slope of b and ¢ wrt a are equal
Worst-case running time:

n X sort(n) = O(n*1gn)
Space:

O(n) for L

Summary

Problem: Given a set of n points in the plane, determine if any are collinear.

Algorithms
brute force: O(n°)
via sorting: O(n?1g n) with O(n?) space
with BBST: same as above
hashing: O(n?) with O(n?) space assuming good hash function

smart sort: O(n? lg n) with O(n) space

Can we do better?

Duality transforms of points and lines in R?

p=(ab)y -e-. » D(p):y=ax—->b
l[:y=ax—-b -------- » D) :p=(a,b)

Write the duals for the following points

p= (1)
p=@.)5)
p=(-42)
p=1(0,1)

Write the duals for the following lines:

y=3x—4
y=x—1
y=2x+1

y=x

Properties

Lemma 1:

» D(D(p)) = pand D(D(])) =1

D(p)

Properties

Lemma 2 [Incidence preserving]:

- If p lies on a line [, than D() lies on D(p)

D(p)

[D(0)

\

Properties

Lemma 3:

- [; and [, interect in point p <= D(p) passses through D(/,) and D(/,)

D(p)

ll D(lz

D(l

Properties

Lemma 4:

g, I, s collinear <==> D(q), D(r), D(s) intersect in a common point

S (q)
D(l

q D(s)

And now back to our problem

Are there 3 points that are collinear? 4—} Are there 3 lines that intersect in one point?

/

3 ““ ..A /
® 3 o /)‘V

It is known how to compute the intersections of 7 lines in
O(nlgn) + k = O(n?), where k = O(n?) is the nb. of intersections

Summary

Problem: Given a set of n points in the plane, determine if any are collinear.

Algorithms
brute force: O(n°)
via sorting: O(n?1g n) with O(n?)space
with BBST: same
hashing: O(n?) with O(n?) space assuming good hash function
smart sort: O(n? lg n) with O(n) space

And fastest solution: compute line intersections in the dual in O(n?)

