

Computational Geometry

(csci3250)

Laura Toma

Bowdoin College

Finding collinear points

We'll start with a warmup problem:

Problem: Given a set of n points in 2D, determine if there exist three points that are collinear.

Come up with different solutions to this problem (and analyze/compare them).

Finding collinear points

Brute force:

- for all distinct triplets of points p_i, p_j, p_k
 - check if they are collinear

- Correct?
 - yes because it checks all triplets
- Worst-case running time:
 - $n \text{ choose } 3 = \Theta(n^3)$ triplets
 - checking if three points are collinear can be done in constant time

$\Rightarrow O(n^3)$ algorithm
- Space: $O(1)$

Via sorting

Algorithm 2

- initialize array $L = \text{empty}$
- for all distinct pairs of points p_i, p_j
 - compute their line equation (slope, intercept) and add it to an array L
- sort array L by (slope, intercept)
- traverse L and if you find any 3 consecutive identical $(s,i) \rightarrow \text{collinear}$

- Correct?
 - if points a, b, c are collinear \Rightarrow (slope, intercept) of (a,b) (b,c) and (a,c) are the same
- Worst-case running time:
 - $\Theta(n^2) + \text{sort}(n^2) = \Theta(n^2 \lg n)$
- Space:
 - $\Theta(n^2)$ for L

With a binary search tree

Algorithm 3

- initialize BBST = empty
- for all distinct pairs of points p_i, p_j
 - compute their line equation (s, i)
 - insert (s, i) in BBST; if when inserting you find that (s, i) is already in the tree, you got three collinear points and return true
- (if you ever get here) return false

- Correct?
 - if points a, b, c are collinear \Rightarrow (slope, intercept) of (a,b) (b,c) and (a,c) are the same
- Worst-case running time:
 - using a balanced tree (like red-black tree, or AVL-tree, or...)
 - $\Theta(n^2)$ inserts $\Rightarrow \Theta(n^2 \lg n)$
- Space:
 - $\Theta(n^2)$ for BBST

With hashing

A hash table supports $\text{find}(x)$, $\text{insert}(x)$, $\text{delete}(x)$

Algorithm 4

- initialize $\text{HashTable} = \text{empty}$
- for all distinct pairs of points p_i, p_j
 - compute their line equation (s, i)
 - insert (s, i) in HashTable ; if when inserting you find that (s, i) is already in the HT, you got three collinear points and return true
- (if you ever get here) return false

- Correct?
 - if points a, b, c are collinear \Rightarrow (slope, intercept) of (a, b) (b, c) and (a, c) are the same
- Worst-case running time:
 - $\Theta(n^2)$ searches & inserts $\Rightarrow \Theta(n^2)$ **If we assume $O(1)$ for $\text{find}(x)$.**
- Space:
 - $\Theta(n^2)$ for hash table

Hashing

```
List<T>[ ] t;  
int n;
```

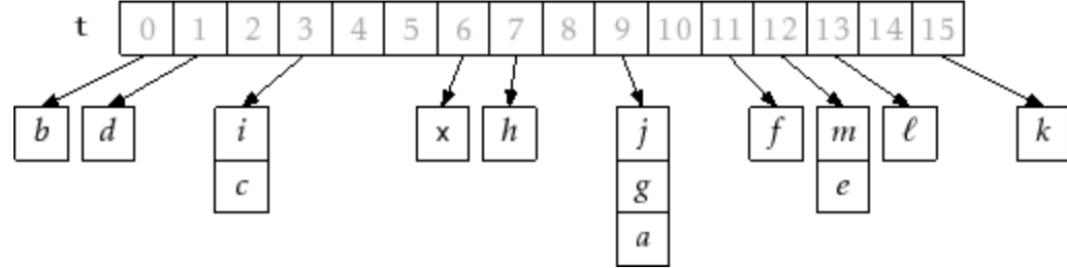


Figure 5.1: An example of a ChainedHashTable with $n = 14$ and

$t.length = 16$. In this example $\text{hash}(x) = 6$

Does $\text{find}(x)$ run in $O(1)$?

- Run time depends on how many other elements have same hash
- **$O(1)$ on the average** assuming a good hash function (spreads the keys uniformly) and $m = O(n)$. Worst-case is still $O(n)$.
- **$O(1)$ expected worst-case** can be achieved with universal hashing (by choosing the hash function uniformly at random from a set of universal hash functions, i.e. which guarantee no collision with high probability)

Families of *universal hash functions* are known for integers

can be extended to primitive types (char, float, string)

- Summary: does $\text{find}(x)$ run in $O(1)$?
theory: $O(1)$ expected, could be $O(n)$ worst case
 $O(1)$ approximately true for many real world situations

With hashing

Algorithm 4

- initialize HashTable = empty
- for all distinct pairs of points p_i, p_j
 - compute their line equation (s, i)
 - insert (s, i) in HashTable; if when inserting you find that (s, i) is already in the HT, you got three collinear points and return true
- (if you ever get here) return false

- In conclusion, this runs in $\Theta(n^2)$ **on the average, assuming a good hash function**

A different way to sort

Algorithm 5

- for every point p_i
 - set array $L = \text{empty}$
 - for every point p_j (with $p_j \neq p_i$)
 - * compute slope of p_j wrt to p_i and add it to array L
 - sort L
 - traverse L and if you find two consecutive points that have same slope, they are collinear with p_i so return true
- (if you get here) return false

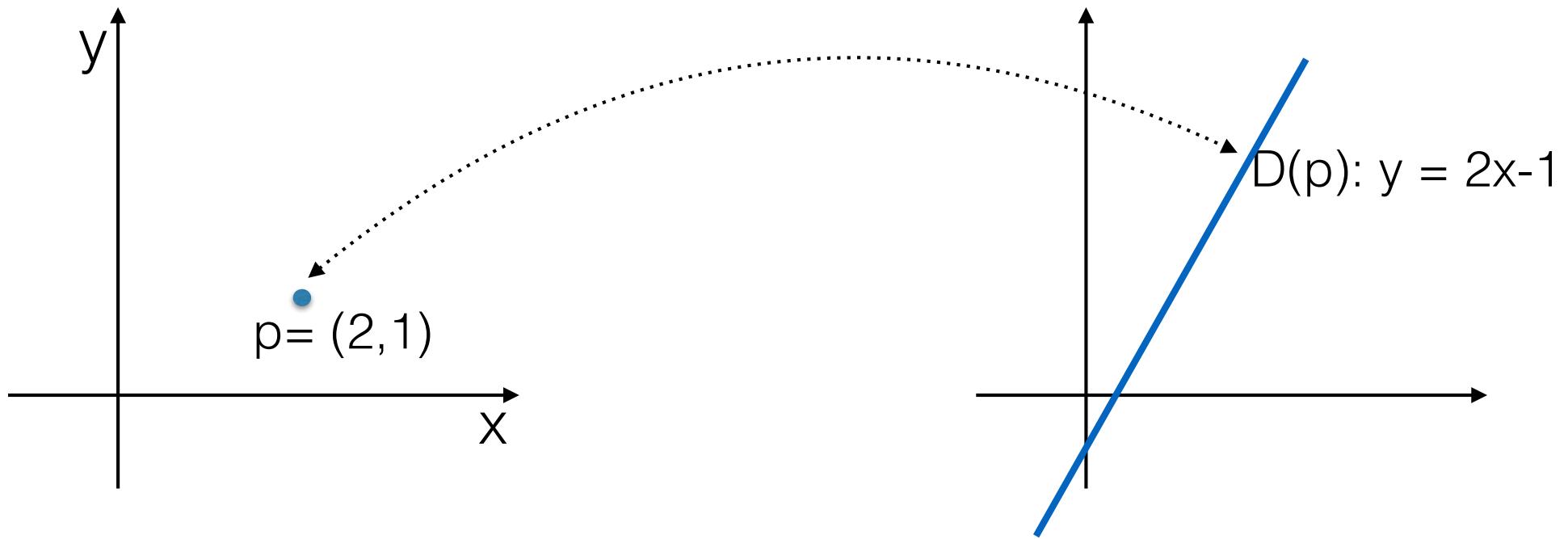
- Correct?
 - if points a, b, c are collinear \Rightarrow slope of b and c wrt a are equal
- Worst-case running time:
 - $n \times \text{sort}(n) = \Theta(n^2 \lg n)$
- Space:
 - $\Theta(n)$ for L

Summary

- Problem: Given a set of n points in the plane, determine if any are collinear.
- Algorithms
 - brute force: $O(n^3)$
 - via sorting: $O(n^2 \lg n)$ with $O(n^2)$ space
 - with BBST: same as above
 - hashing: $O(n^2)$ with $O(n^2)$ space assuming good hash function
 - smart sort: $O(n^2 \lg n)$ with $O(n)$ space

Can we do better?

Duality transforms of points and lines in \mathbb{R}^2



Definition: The duality transform is defined as:

$$p = (a, b) \quad \dots \rightarrow \quad D(p) : y = ax - b$$

$$l : y = ax - b \quad \dots \rightarrow \quad D(l) : p = (a, b)$$

Write the duals for the following points

$$p = (1,1)$$

$$p = (3,5)$$

$$p = (-4,2)$$

$$p = (0,1)$$

Write the duals for the following lines:

$$y = 3x - 4$$

$$y = x - 1$$

$$y = 2x + 1$$

$$y = x$$

Properties

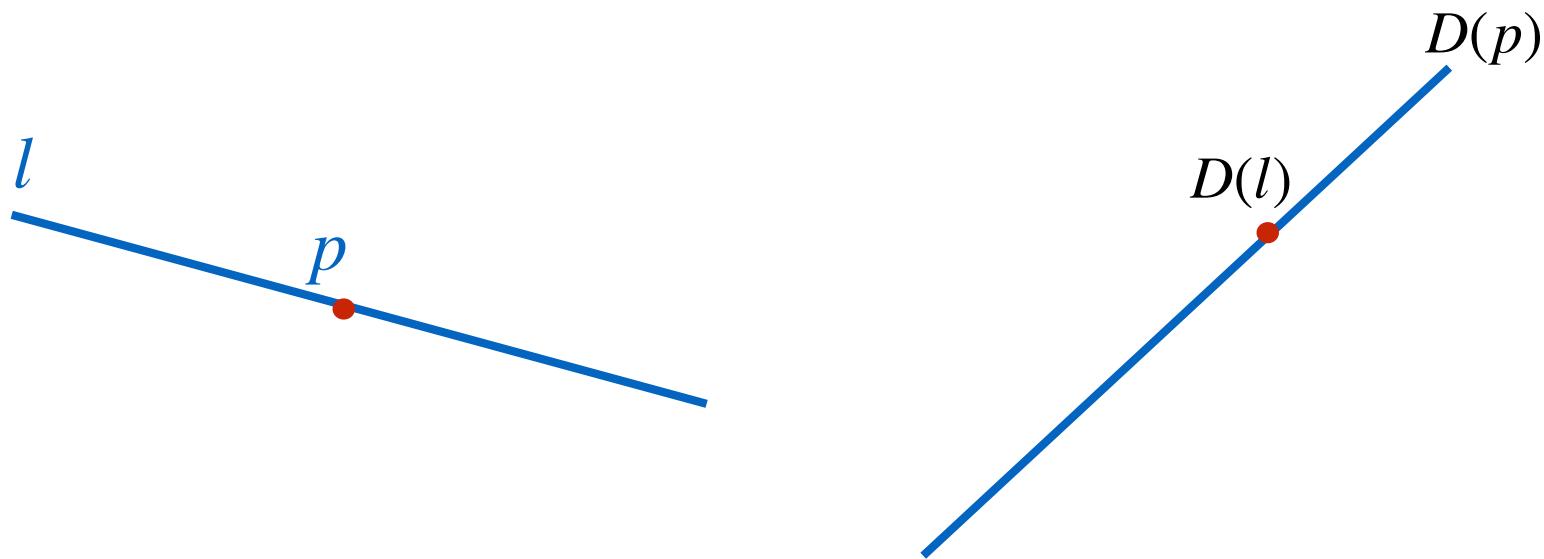
Lemma 1:

- $D(D(p)) = p$ and $D(D(l)) = l$

Properties

Lemma 2 [Incidence preserving]:

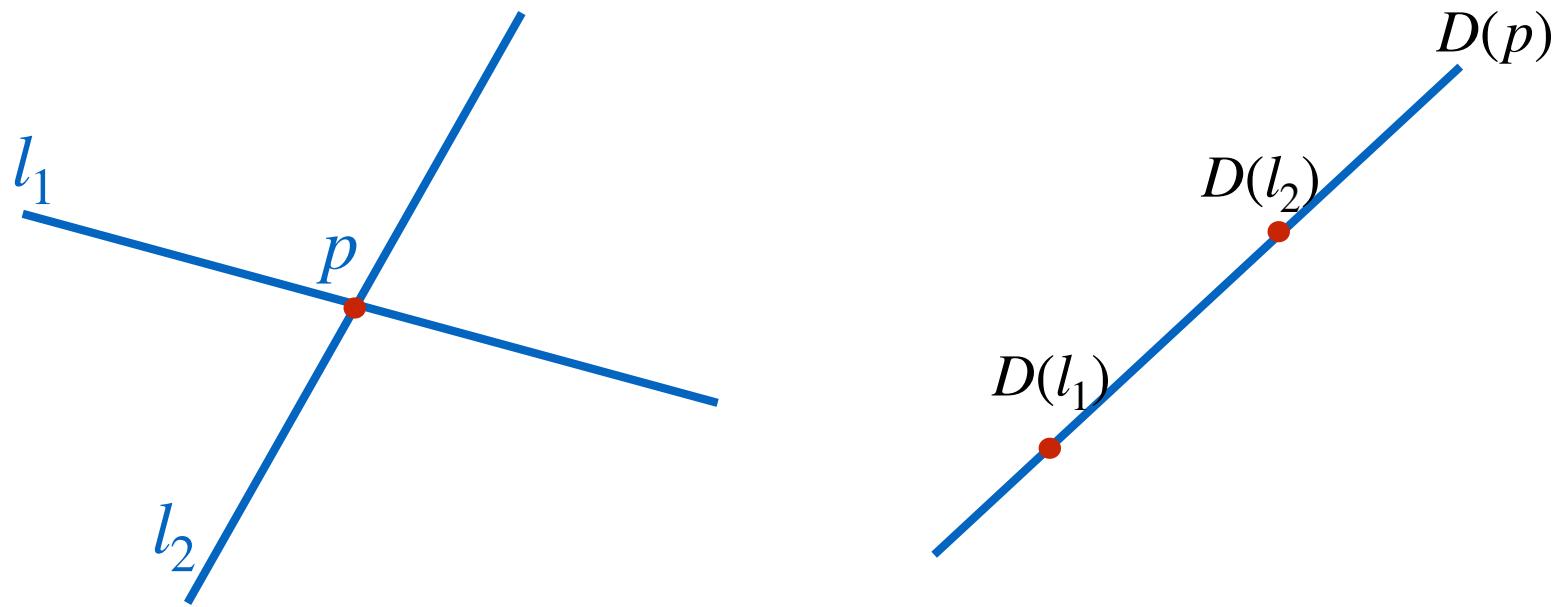
- If p lies on a line l , then $D(l)$ lies on $D(p)$



Properties

Lemma 3:

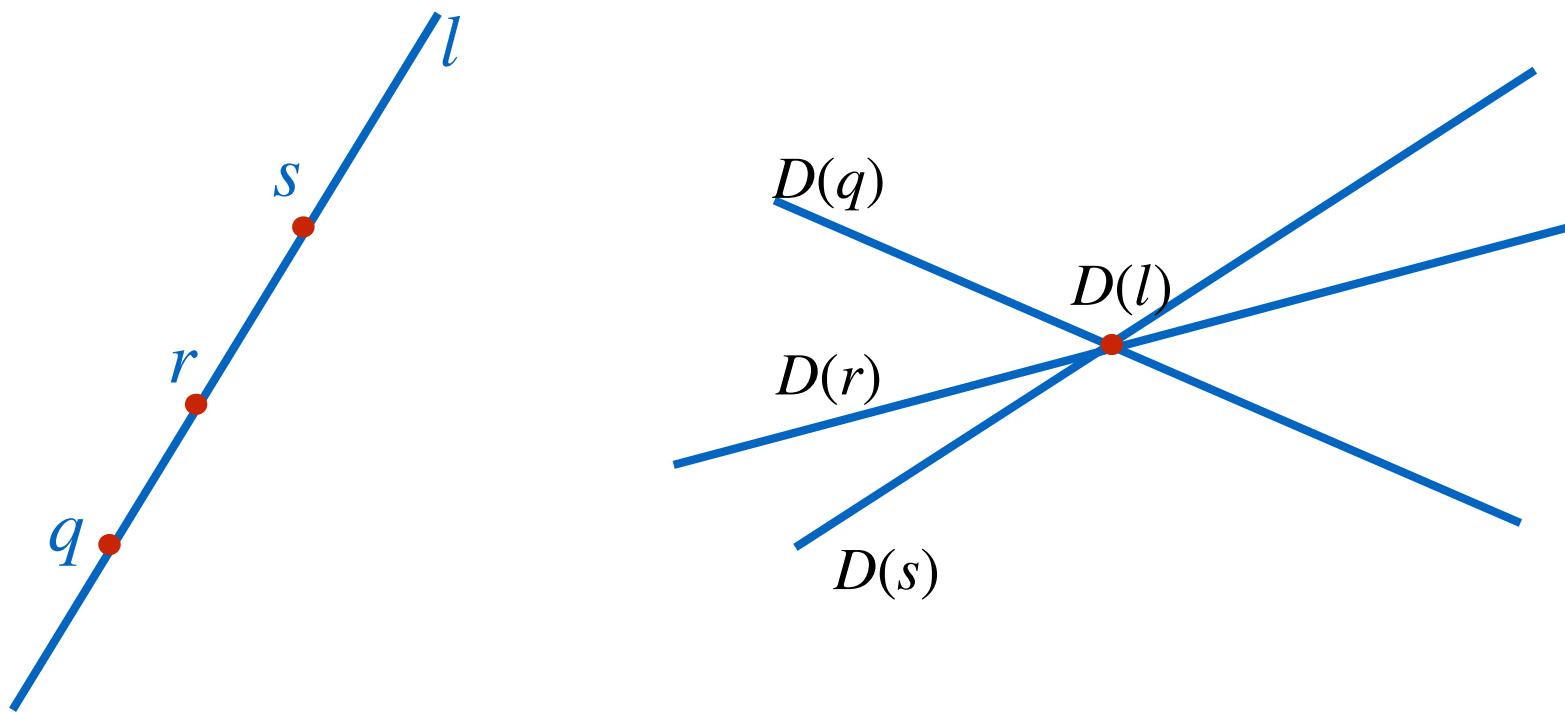
- l_1 and l_2 intersect in point $p \iff D(p)$ passes through $D(l_1)$ and $D(l_2)$



Properties

Lemma 4:

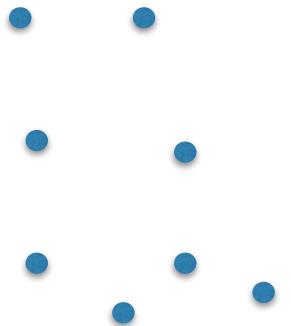
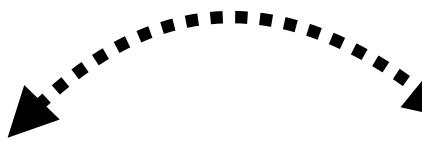
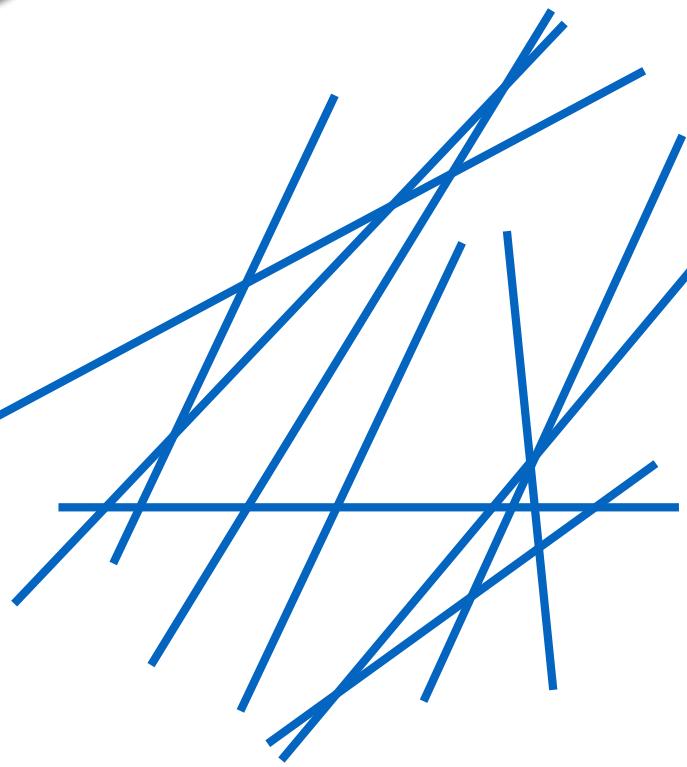
q, r, s collinear $\iff D(q), D(r), D(s)$ intersect in a common point



And now back to our problem

Are there 3 points that are collinear?

Are there 3 lines that intersect in one point?



It is known how to compute the intersections of n lines in $O(n \lg n) + k = O(n^2)$, where $k = O(n^2)$ is the nb. of intersections

Summary

- Problem: Given a set of n points in the plane, determine if any are collinear.
- Algorithms
 - brute force: $O(n^3)$
 - via sorting: $O(n^2 \lg n)$ with $O(n^2)$ space
 - with BBST: same
 - hashing: $O(n^2)$ with $O(n^2)$ space assuming good hash function
 - smart sort: $O(n^2 \lg n)$ with $O(n)$ space
- And fastest solution: compute line intersections in the dual in $O(n^2)$