Finding the closest pair

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Given an array of points in 2D, find the closest pair.

In terms of the Euclidian distance

Given an array of points in 2D, find the closest pair.

In terms of the Euclidian distance

.pg
@&
&
@ P7 &
Po
&
e 1%
®p1o 0@ Pog o
@&
®p4
&
& p.1 °
&
ps . '
.p9 '|O5

Given an array of points in 2D, find the closest pair.

Brute force:
- mindist = VERY LARGE VALUE

- for all distinct pairs of poilnts pi, pPj;

- d = distance (pi, Pj) < dumg)=vk%—%V+(x—wf

« 1f (d < mindist): mindist=d

e Analysis: Can we do better

than O(n2)7

e O(n?) pairs ==> O(n2) time

Divide-and-conquer refresher

Divide-and-conquer

mergesort(array A)
- if A has 1 element, there’s nothing to sort, so just return it
- else
//divide input A into two halves, A1 and A2
- A1 =first half of A
- A2 = second half of A
//sort recursively each half
- sorted_A1 = mergesort(array A1)
- sorted_A2 = mergesort(array A2)
//merge
- result = merge_sorted_arrays(sorted_A1, sorted_A2)

- return result

Analysis: T(n) = 2T(n/2) + O(n) => O(nlgn)

D&C, in general

DC(input P)
if P is small, solve and return

else

divide input P into two halves, P1 and P2

resultl = DC(P1)
result2 = DC(P2)

do_something_to_figure_out_result_for_P

return result

Analysis: T(n) = 2T(n/2) + O()

* if merge phase is : T(n) = 2T(n/2) + => 0O(nlgn)

* if merge phase is : T(n) = 2T(n/2) + => O(n 1g2n)

Closest pair, divide-and-conquer

e find vertical line that splits P in half

Closest pair, divide-and-conquer

e find vertical line that splits P in half
 let P1, P2 = set of points to the left/right of line

Closest pair, divide-and-conquer

e find vertical line that splits P in half
 let P1, P2 = set of points to the left/right of line
 recursively find closest pair in Pl

Closest pair, divide-and-conquer

find vertical line that splits P in half

let P1, P2 = set of points to the left/right of line
recursively find closest pair in Pl

recursively find closest pair in P2

Closest pair, divide-and-conquer

find vertical line that splits P in half

let P1, P2 = set of points to the left/right of line
recursively find closest pair in Pl

recursively find closest pair in P2

/... NOW WHAT 77?7

Closest pair, divide-and-conquer

find vertical line that splits P in half

let P1, P2 = set of points to the left/right of line
recursively find closest pair in Pl

recursively find closest pair in P2

find closest pair that straddles the line
return the minimum of the three

Closest pair, divide-and-conquer

FindClosestPair(P)
//basecase
- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
- find vertical line that splits P in half .
- let P1, P2 = set of points to the left/right of line
- d4 = FindClosestPair(P1)
- d2 = FindClosestPair(P2) 1. Is this correct?
//compute closest pair across 2. Running time?
- mindist=infinity
- for each p in P4, foreach qin P2
- compute distance d(p,q)
- mindist = min{mindist, d(p,q)}
//return smallest of the three
- return min {d+, d2, mindist}

1.Why is this correct?

The closest pair in P falls in one of three cases:
 Both points are in P1: then it is found by the recursive call on P1
e Both points are in P2: then it is found by the recursive call on P2
* One pointis in P1 and one in P2: then it is found in the merge

phase, because the merge phase considers all such pairs

2. Running time

FindClosestPair(P)
//basecase
- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
. find vertical line that splits P in half solves to O(n?)
- let P1, P2 = set of points to the left/right of line
-+ d+4 = FindClosestPair(P1)
- d2 = FindClosestPair(P2)
//compute closest pair across
- mindist=infinity
- for each p in P4, foreach g in P2
- compute distance d(p,q)
- mindist = min{mindist, d(p,q)}
//return smallest of the three Can we do better?
- return min {d+, d2, mindist}

T(n) = 2T(n/2) + O(n?)

Refining the merge

Do we need to examine all pairs p,q, with p in P1, g in P2?

Which pairs {p,q} can be discarded?

® o
®
o
g o o
e
o e’ . o
o
o
@ p‘ .
O @ o
@ do
®

Here’s a simple observation

e Notation: d = min{d,,d,}

e Observation: We are looking for points that are closer than d. If there is a pair of
points p, g with d(p, g) < d, then both the horizontal and vertical distance

between p and g must be smaller than d.

<d

o Notation: d = min{d,, d,}

e Furthermore, if there is a pair of points p, g with d(p, g) < d, then both p and g
must be within distance d from line L.

L
O
° ®
o
-
4 2 o
X)
o o o
e
o
®
° ® .
— ..':dz
®
o

Refining the merge

FindClosestPair(P)
//basecase o
- if P has 1 point, return infinity
- if P has 2 points, return their distance q
- else

- find vertical line that splits P in half

- let P1, P2 = set of points to the left/right
of line _

+ d1 = FindClosestPair(P1) d d

- d2 = FindClosestPair(P2)

//compute closest pair across

- mindist=infinity - traverse P1 and select all points P1’ in the strip
- traverse P2 and select all points P2’ in the strip

- forea in P1, for egg q in P2
. compute ce d(p,q) - for each p in P1’, for each q in P2’
- mi &, d(p.q)} + compute distance d(p,q)

- mindist = min{mindist, d(p,q)}

//return smallest of the three

» return min {d1, d2, mindist} Running time?

Running time

 How many points can there be in the strip?

» What does this imply for the running time?

Refining some more

« Using the points in the strip is not enough, there can still be €2(n) of them
- Note that the strip contains candidate pairs that could be within distance d of

each other
« We haven't used yet that candidate pairs have to be within distance d of each

other

.q (p, @) not a candidate pair because their
vertical distance > d
O
O
O
o)
o
.
<----Pdq----9

Refining some more

©
® . We are interested in the points g of P2’
Ad whose distance to pis < d
AT L
................. R P
§d These points are vertically above or below
.................................. h AT
p by at most d
o
0
<----Ppdq----

‘.b._"> ‘IIQ"">

« For a point p in P+: We only need to check
the points on the other side that are
vertically at most d above/below p

 How many such points can there be?

Let P be a set of points such that any two points are at least d away from each other.

Claim: Then any square with side d contains at most points of P.

Let P be a set of points such that any two points are at least d away from each other.

Claim: Then any square with side d contains at most 4 points of P.

The new merge

 Traverse the points in P1" and P2’ in increasing order of their y-coordinate
» Mimic the process of merging P+’ and P2’ in y-order
» Consider the next point p in y-order and let’'s say it comes from P+’

« p will check only the points in Pé above it (following it in y-order) that are within d

A ® ®
@
worst case
______ o
"..‘ ‘‘‘‘‘ ® p
.. L & a
" :
o P
P e d
................. ...;:':‘I'..............Y..............
‘o

closestPair(P)
//divide
- find vertical line | that splits P in half
- let P4, P2 = set of points to the left/right of line
- d1 = closestPair(P1)
- d2 = closestPair(P2)
//refined merge
- let d = min{d+, d2}
- forall pin P1:if Xp > xi - d: add p to Strip1
- forall pin P2 if xp < xi + d: add p to Strip2
- sort Strip1, Strip2 by y-coord
- initialize mindist=d
- merge Strip1, Strip2: for next point p,
- compute its distance to the 4 points that come after it on the
other side of the strip
- if any of these is smaller than mindist, update mindist

- return min{d1, d2, mindist}

Analysis: T(n) = 2T(n/2) + O(n Ig n) => O(n Ig2n)

-
o
o
03
o
o
o
o
o
-

Why the Ig2n? ... because

merging needs to sort the
points in the strip

| need to get merging
to work in O(n) time

\/eCtOI’StOCk' VectorStock.com/16927932

Can we do better?

We'd love to get rid of the extra Ig n

Refining the refined merge

 Instead of sorting inside every merge, we'll pre-sort P once at the beginning
° Sor’[by X_Coord: PX note: sorting by x is not necessary but practical

e sort by y-coord: PY..

closestPair(PX, PY)

 These sorted list will be maintained through the recursion

Refining the refined merge

closestPair(PX, PY)

//divide
e find vertical line L that splits P in half
o let Py, P2 = set of points to the left/right of line <— We need to get P1X, P1Y, P2X, P2Y
o d; = clesestPair(P) closestPair(P1X, P1Y)
o d, = closestPair(P2) closestPair(P2X, P2Y)
//merge
e let d = min{d;, d2} Traverse PLY: if x, > x.-d: add p to Stripl
o for-alpin—P.if x> x—d:addpto-Stripl
o forallpin—Paif %< x—+d—addpto-Strip2
o sort-Stripl;Strip2-byy—coord //Stripl, Strip2 are y-sorted!
e initialize mindist=d
 merge Stripl, Strip2: for next point p,

e compute its distance to the 5 points that come after it on the

other side of the strip
e if any of these is smaller than mindist, update mindist

e return min{dl, d2, mindist}

Analysis: T(n) = 2T(n/2) + O(n) = O(nlgn) Hooray!

Almost there..

* A few more details to think about
« We have PX, PY
 We need to:
« Find the vertical line that splits P in half.
« Get P1X, P2X.
o Get P1Y, P2Y.

