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Given an array of points in 2D, find the closest pair.
In terms of the Euclidian distance
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Given an array of points in 2D, find the closest pair.
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In terms of the Euclidian distance



Brute force:  
• mindist = VERY_LARGE_VALUE


• for all distinct pairs of points pi, pj


• d = distance (pi, pj)


• if (d < mindist): mindist=d

• Analysis: 

• O(n2) pairs  ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better 
than O(n2)?

d(pi, pj) = (xi − xj)2 + (yi − yj)2



Divide-and-conquer refresher



Divide-and-conquer

Analysis: T(n) = 2T(n/2) + O(n)  => O( n lg n)

mergesort(array A) 
• if A has 1 element, there’s nothing to sort, so just return it

• else 


//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half 

• sorted_A1 = mergesort(array A1) 

• sorted_A2 = mergesort(array A2) 

//merge 

• result = merge_sorted_arrays(sorted_A1, sorted_A2) 

• return result



DC(input P) 
if P is small, solve and return 

else 


//divide

divide input P into two halves, P1 and P2

//recurse 


result1 = DC(P1) 


result2 = DC(P2) 

//merge 

do_something_to_figure_out_result_for_P  

 
return result

D&C, in general

• if merge phase is O(n):        T(n) = 2T(n/2) + O(n)         => O( n lg n)


• if merge phase is O(n lg n): T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Analysis: T(n) = 2T(n/2) + O(merge phase) 



• find vertical line that splits P in half


Closest pair, divide-and-conquer



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line


P1 P2

Closest pair, divide-and-conquer



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1


P1 P2

Closest pair, divide-and-conquer



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

P1 P2

Closest pair, divide-and-conquer



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• //…… NOW WHAT ???

Closest pair, divide-and-conquer



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• find closest pair that straddles the line
• return the minimum of the three

Closest pair, divide-and-conquer



FindClosestPair(P) 
 //basecase

• if P has 1 point, return infinity 

• if P has 2 points, return their distance

• else 


• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)


 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2


• compute distance d(p,q) 

• mindist = min{mindist, d(p,q)}


  //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

1. Is this correct?


2. Running time?  



The closest pair in P falls in one of three cases: 


• Both points are in P1: then it is found by the recursive call on P1


• Both points are in P2: then it is found by the recursive call on P2


• One point is in P1 and one in P2: then it is found in the merge 

phase, because the merge phase considers all such pairs

1.Why is this correct?




T(n) = 2T(n/2) + O(n2)

solves to O(n2)

Can we do better?

FindClosestPair(P) 
 //basecase

• if P has 1 point, return infinity 

• if P has 2 points, return their distance

• else 


• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)


 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2


• compute distance d(p,q) 

• mindist = min{mindist, d(p,q)}


  //return smallest of the three

• return min {d1, d2, mindist}

2. Running time 


this merge is too slow



Refining the merge

Do we need to examine all pairs p,q, with p in P1, q in P2? 


Which pairs {p,q} can be discarded?

p
q

d2

d1

Here’s a simple observation



• Notation: d = min{d1, d2}

• Observation:  We are looking for points that are closer than . If there is a pair of 

points  with , then both the horizontal and vertical distance 

between  and  must be smaller than .  

d
p, q d(p, q) < d

p q d

p

q
< d



• Furthermore,  if there is a pair of points  with , then both  and  
must be within distance  from line L.  

p, q d(p, q) < d p q
d

d2

d1

L

d1 d1

• Notation: d = min{d1, d2}



FindClosestPair(P) 
 //basecase

• if P has 1 point, return infinity 

• if P has 2 points, return their distance

• else 


• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right 

of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)


 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2


• compute distance d(p,q) 

• mindist = min{mindist, d(p,q)}


  //return smallest of the three

• return min {d1, d2, mindist}

Refining the merge

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’, for each q in P2’


• compute distance d(p,q) 

• mindist = min{mindist, d(p,q)}

p
q

d2

d1

dd

Running time? 



• How many points can there be in the strip? 

• What does this imply for the running time?

p
q

d2

d1

Running time



• Using the points in the strip is not enough, there can still be  of them

• Note that the strip contains candidate pairs that could be within distance  of 

each other  horizontally 

• We haven’t used yet that candidate pairs have to be within distance  of each 

other vertically

Ω(n)
d

d

Refining some more

( ) not a candidate pair because their 
vertical distance  

p, q
> d

d d

p

q



Refining some more

d

d

We are interested in the points  of P2’ 

whose distance to  is 


These points are vertically above or below 

 by at most  

q
p < d

p d

d d

p



d d

• For a point  in P1’: We only need to check 
the points on the other side that are 
vertically at most  above/below 

p

d p

p

d

d

• How many such points can there be?



Claim: Then any square with side  contains at most   _____  points of P.d

Let P be a set of points such that any two points are at least  away from each other. d



d

Claim: Then any square with side  contains at most    4   points of P.d

Let P be a set of points such that any two points are at least  away from each other. d



The new merge

y

• Traverse the points in P1’ and P2’ in increasing order of their y-coordinate 

• Mimic the process of merging P1’ and P2’ in y-order

• Consider the next point p in y-order and let’s say it comes from P1’


•  will check only the points in   above it (following it in y-order)  that are within  


//There can be at most 4 subsequent points in P2’ that are within d from p.

p P′￼2 d

d d

pp

worst case

Note: Assume no duplicate points.

d



closestPair(P) 
//divide

• find vertical line l that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)

• d2 = closestPair(P2)

//refined merge

• let d = min{d1, d2}

• for all p in  P1: if xp > xl - d: add p to Strip1

• for all p in  P2: if xp < xl + d: add p to Strip2

• sort Strip1, Strip2 by y-coord

• initialize mindist=d

• merge Strip1, Strip2: for next point p, 


• compute its distance to the 4 points that come after it on the 
other side of the strip 


• if any of these is smaller than mindist, update mindist 


• return min{d1, d2, mindist}

d d

y

Analysis:  T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)



Can we do better?

Why the lg2n? … because 
merging  needs to sort the 

points in the strip


We’d love to get rid of the extra lg n

I need to get merging 
to work in O(n) time



• Instead of sorting inside every merge, we’ll pre-sort P once at the beginning 

• sort by x-coord: PX   

• sort by y-coord: PY..


• These sorted list will be maintained through the recursion 

closestPair(PX,   PY)

Refining the refined merge

note: sorting by x is not necessary but practical 



Refining the refined merge

closestPair(PX, PY)
//divide

• find vertical line L that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)   closestPair(P1X, P1Y)

• d2 = closestPair(P2)  closestPair(P2X, P2Y)

//merge

• let d = min{d1, d2}

• for all p in  P1: if xp > xl - d: add p to Strip1

• for all p in  P2: if xp < xl + d: add p to Strip2

• sort Strip1, Strip2 by y-coord

• initialize mindist=d

• merge Strip1, Strip2: for next point p, 


• compute its distance to the 5 points that come after it on the 
other side of the strip 


• if any of these is smaller than mindist, update mindist 


• return min{d1, d2, mindist}

Analysis:  T(n) = 2T(n /2) + O(n) ⟹ O(n lg n)

<— We need to get P1X, P1Y, P2X, P2Y

Traverse P1Y: if xp > xL-d: add p to Strip1

//Strip1, Strip2  are y-sorted!

Hooray!



• A few more details to think about 

• We have PX, PY

• We need to: 


• Find the vertical line that splits P in half. 

• Get P1X, P2X. 

• Get P1Y, P2Y.  

Almost there..


