
Finding the closest pair

Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Given an array of points in 2D, find the closest pair.
In terms of the Euclidian distance

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 ….

p0

Given an array of points in 2D, find the closest pair.

P

In terms of the Euclidian distance

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d < mindist): mindist=d

• Analysis:

• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better
than O(n2)?

d(pi, pj) = (xi − xj)2 + (yi − yj)2

Divide-and-conquer refresher

Divide-and-conquer

Analysis: T(n) = 2T(n/2) + O(n) => O(n lg n)

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_A1 = mergesort(array A1)

• sorted_A2 = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_A1, sorted_A2)

• return result

DC(input P)
if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

 
return result

D&C, in general

• if merge phase is O(n): T(n) = 2T(n/2) + O(n) => O(n lg n)

• if merge phase is O(n lg n): T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Analysis: T(n) = 2T(n/2) + O(merge phase)

• find vertical line that splits P in half

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• //…… NOW WHAT ???

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• find closest pair that straddles the line
• return the minimum of the three

Closest pair, divide-and-conquer

FindClosestPair(P)
 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{mindist, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

1. Is this correct?

2. Running time?

The closest pair in P falls in one of three cases:

• Both points are in P1: then it is found by the recursive call on P1

• Both points are in P2: then it is found by the recursive call on P2

• One point is in P1 and one in P2: then it is found in the merge

phase, because the merge phase considers all such pairs

1.Why is this correct?

T(n) = 2T(n/2) + O(n2)

solves to O(n2)

Can we do better?

FindClosestPair(P)
 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{mindist, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

2. Running time

this merge is too slow

Refining the merge

Do we need to examine all pairs p,q, with p in P1, q in P2?

Which pairs {p,q} can be discarded?

p
q

d2

d1

Here’s a simple observation

• Notation: d = min{d1, d2}

• Observation: We are looking for points that are closer than . If there is a pair of

points with , then both the horizontal and vertical distance

between and must be smaller than .

d
p, q d(p, q) < d

p q d

p

q
< d

• Furthermore, if there is a pair of points with , then both and
must be within distance from line L.

p, q d(p, q) < d p q
d

d2

d1

L

d1 d1

• Notation: d = min{d1, d2}

FindClosestPair(P)
 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right

of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{mindist, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

Refining the merge

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’, for each q in P2’

• compute distance d(p,q)

• mindist = min{mindist, d(p,q)}

p
q

d2

d1

dd

Running time?

• How many points can there be in the strip?

• What does this imply for the running time?

p
q

d2

d1

Running time

• Using the points in the strip is not enough, there can still be of them

• Note that the strip contains candidate pairs that could be within distance of

each other horizontally

• We haven’t used yet that candidate pairs have to be within distance of each

other vertically

Ω(n)
d

d

Refining some more

() not a candidate pair because their
vertical distance

p, q
> d

d d

p

q

Refining some more

d

d

We are interested in the points of P2’

whose distance to is

These points are vertically above or below

 by at most

q
p < d

p d

d d

p

d d

• For a point in P1’: We only need to check
the points on the other side that are
vertically at most above/below

p

d p

p

d

d

• How many such points can there be?

Claim: Then any square with side contains at most _____ points of P.d

Let P be a set of points such that any two points are at least away from each other. d

d

Claim: Then any square with side contains at most 4 points of P.d

Let P be a set of points such that any two points are at least away from each other. d

The new merge

y

• Traverse the points in P1’ and P2’ in increasing order of their y-coordinate

• Mimic the process of merging P1’ and P2’ in y-order

• Consider the next point p in y-order and let’s say it comes from P1’

• will check only the points in above it (following it in y-order) that are within

//There can be at most 4 subsequent points in P2’ that are within d from p.

p P′￼2 d

d d

pp

worst case

Note: Assume no duplicate points.

d

closestPair(P)
//divide

• find vertical line l that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)

• d2 = closestPair(P2)

//refined merge

• let d = min{d1, d2}

• for all p in P1: if xp > xl - d: add p to Strip1

• for all p in P2: if xp < xl + d: add p to Strip2

• sort Strip1, Strip2 by y-coord

• initialize mindist=d

• merge Strip1, Strip2: for next point p,

• compute its distance to the 4 points that come after it on the
other side of the strip

• if any of these is smaller than mindist, update mindist

• return min{d1, d2, mindist}

d d

y

Analysis: T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Can we do better?

Why the lg2n? … because
merging needs to sort the

points in the strip

We’d love to get rid of the extra lg n

I need to get merging
to work in O(n) time

• Instead of sorting inside every merge, we’ll pre-sort P once at the beginning

• sort by x-coord: PX

• sort by y-coord: PY..

• These sorted list will be maintained through the recursion

closestPair(PX, PY)

Refining the refined merge

note: sorting by x is not necessary but practical

Refining the refined merge

closestPair(PX, PY)
//divide

• find vertical line L that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1) closestPair(P1X, P1Y)

• d2 = closestPair(P2) closestPair(P2X, P2Y)

//merge

• let d = min{d1, d2}

• for all p in P1: if xp > xl - d: add p to Strip1

• for all p in P2: if xp < xl + d: add p to Strip2

• sort Strip1, Strip2 by y-coord

• initialize mindist=d

• merge Strip1, Strip2: for next point p,

• compute its distance to the 5 points that come after it on the
other side of the strip

• if any of these is smaller than mindist, update mindist

• return min{d1, d2, mindist}

Analysis: T(n) = 2T(n /2) + O(n) ⟹ O(n lg n)

<— We need to get P1X, P1Y, P2X, P2Y

Traverse P1Y: if xp > xL-d: add p to Strip1

//Strip1, Strip2 are y-sorted!

Hooray!

• A few more details to think about

• We have PX, PY

• We need to:

• Find the vertical line that splits P in half.

• Get P1X, P2X.

• Get P1Y, P2Y.

Almost there..

