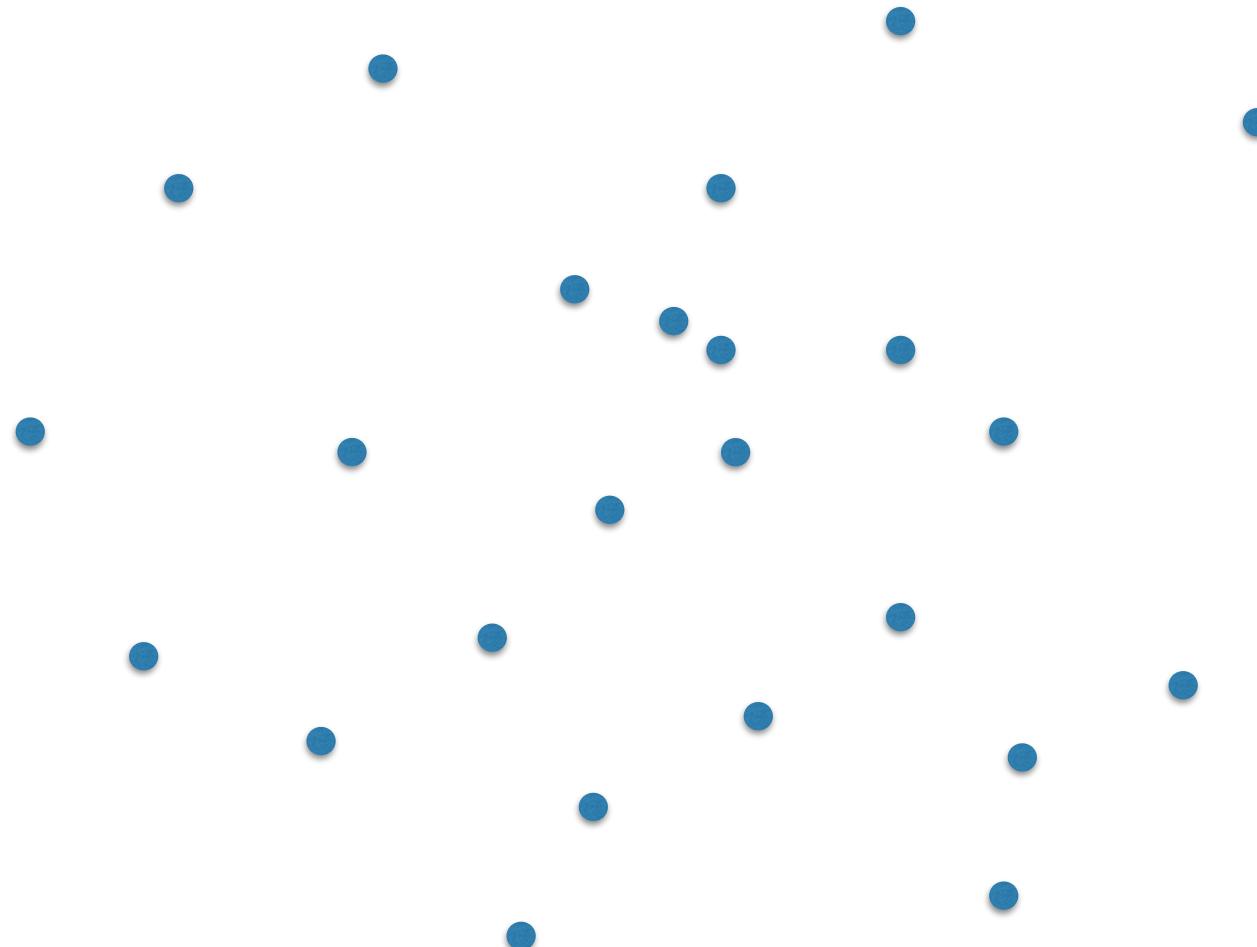


Finding the closest pair

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

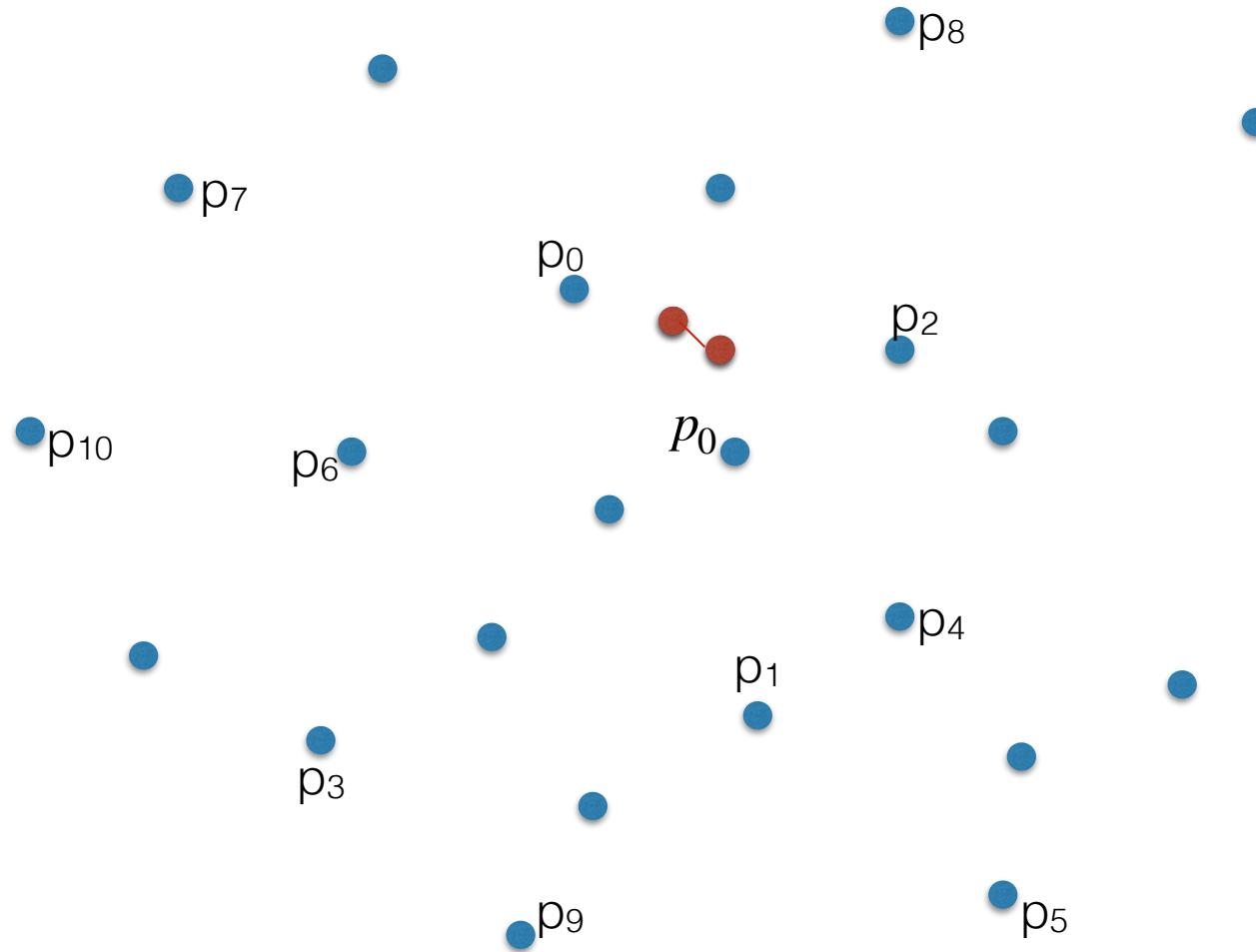
Given an array of points in 2D, find the **closest** pair.

In terms of the Euclidian distance



Given an array of points in 2D, find the **closest** pair.

In terms of the Euclidian distance


$$P \quad \boxed{p_0 \mid p_1 \mid p_2 \mid p_3 \mid p_4 \mid \quad \mid \quad \dots}$$

Given an array of points in 2D, find the **closest** pair.

Brute force:

- `mindist = VERY_LARGE_VALUE`
- for all distinct pairs of points p_i, p_j
 - $d = \text{distance } (p_i, p_j)$
 - $d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$
 - if $(d < \text{mindist})$: $\text{mindist} = d$

• Analysis:

- $O(n^2)$ pairs $\Rightarrow O(n^2)$ time

Can we do better than $O(n^2)$?

Divide-and-conquer refresher

Divide-and-conquer

mergesort(array A)

- if A has 1 element, there's nothing to sort, so just return it
- else
 - `//divide input A into two halves, A1 and A2`
 - $A1 = \text{first half of } A$
 - $A2 = \text{second half of } A$
 - `//sort recursively each half`
 - $\text{sorted_}A1 = \text{mergesort(array } A1)$
 - $\text{sorted_}A2 = \text{mergesort(array } A2)$
 - `//merge`
 - $\text{result} = \text{merge_sorted_arrays(sorted_} A1, \text{sorted_} A2)$
 - return result

Analysis: $T(n) = 2T(n/2) + O(n) \Rightarrow O(n \lg n)$

D&C, in general

DC(input P)

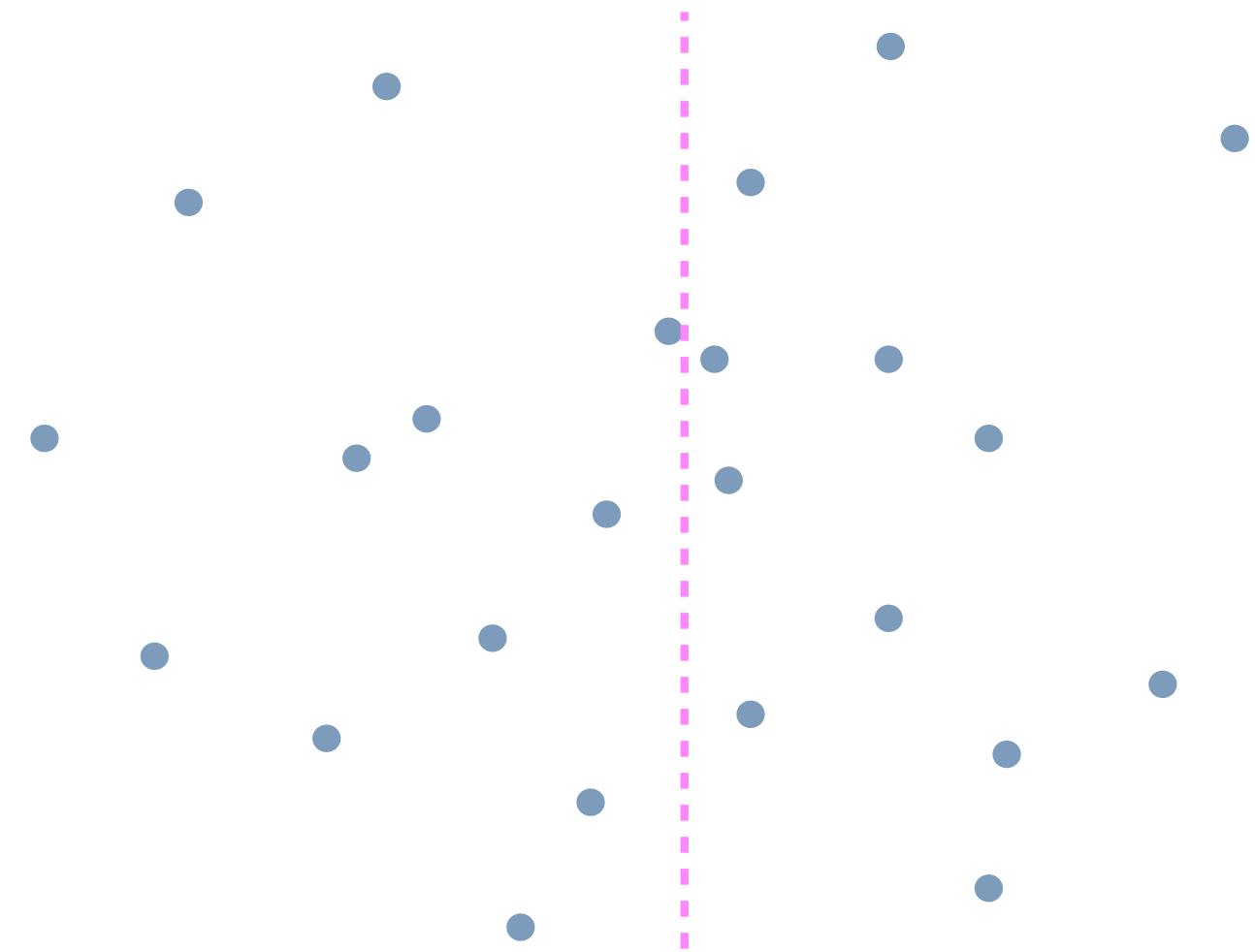
```
if P is small, solve and return
else
    //divide
    divide input P into two halves, P1 and P2
    //recurse
    result1 = DC(P1)
    result2 = DC(P2)
    //merge
    do_something_to_figure_out_result_for_P
return result
```

Analysis: $T(n) = 2T(n/2) + O(\text{merge phase})$

- if merge phase is **$O(n)$** : $T(n) = 2T(n/2) + O(n) \Rightarrow O(n \lg n)$
- if merge phase is **$O(n \lg n)$** : $T(n) = 2T(n/2) + O(n \lg n) \Rightarrow O(n \lg^2 n)$

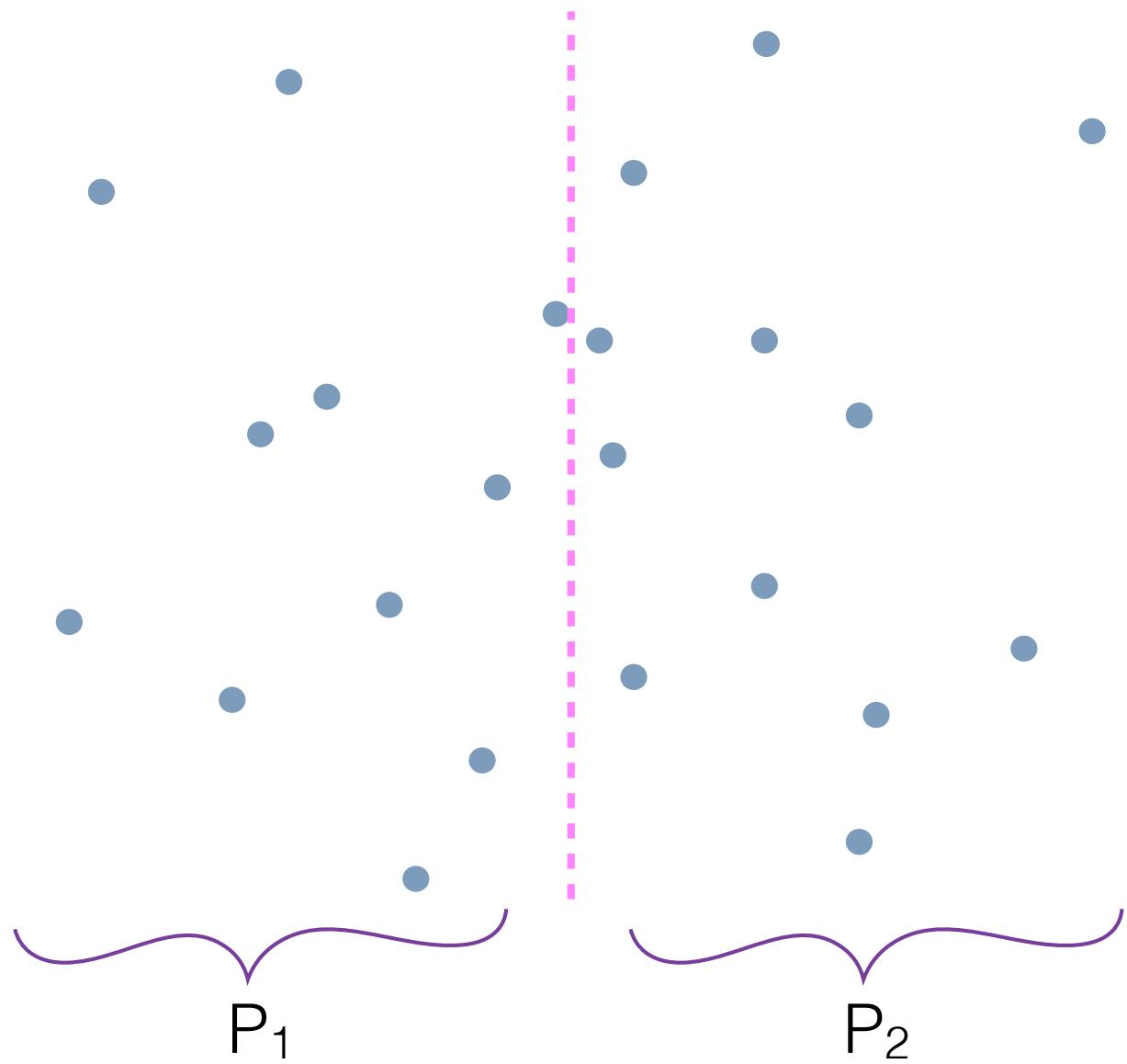
Closest pair, divide-and-conquer

- find vertical line that splits P in half



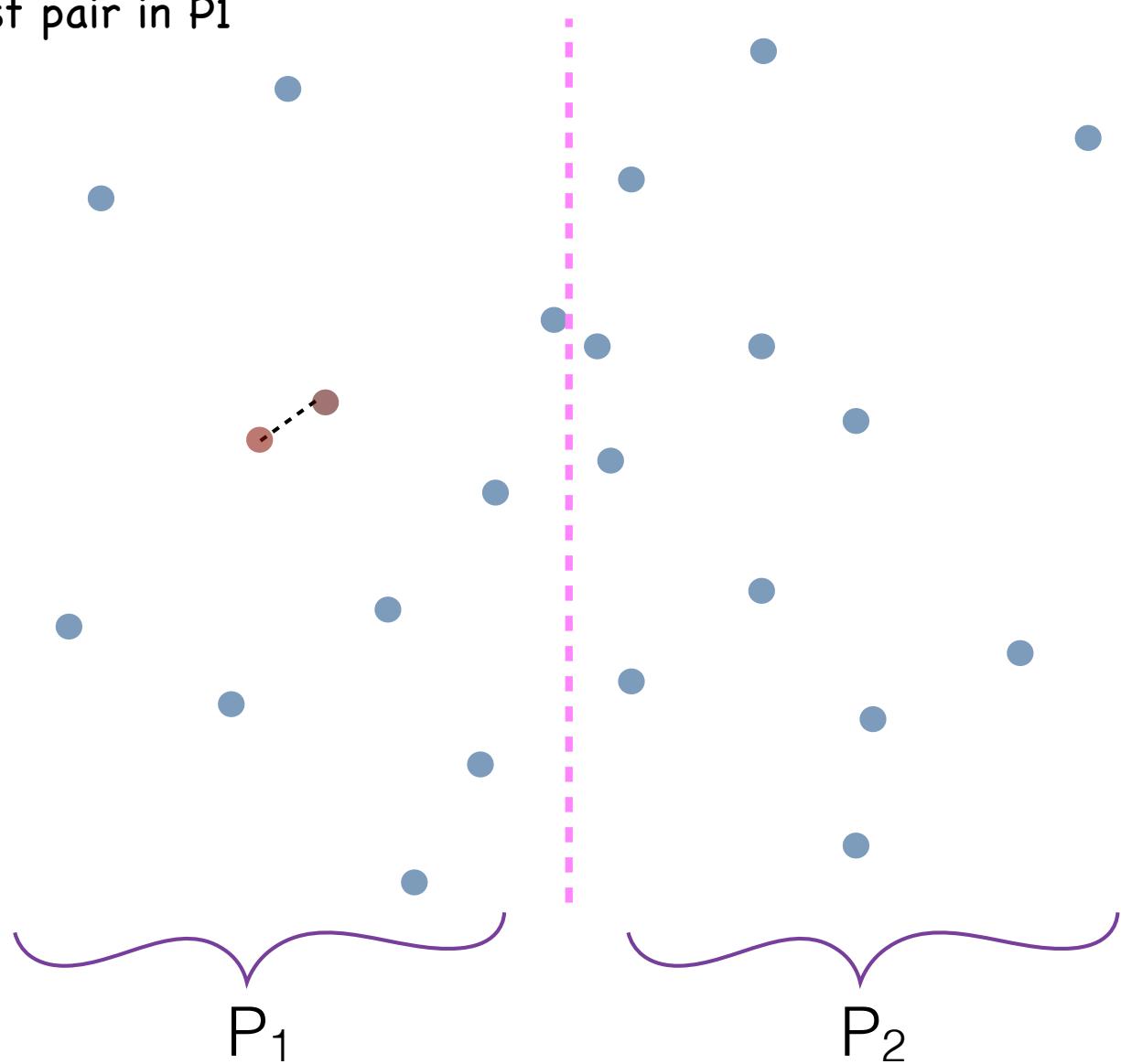
Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P_1, P_2 = set of points to the left/right of line



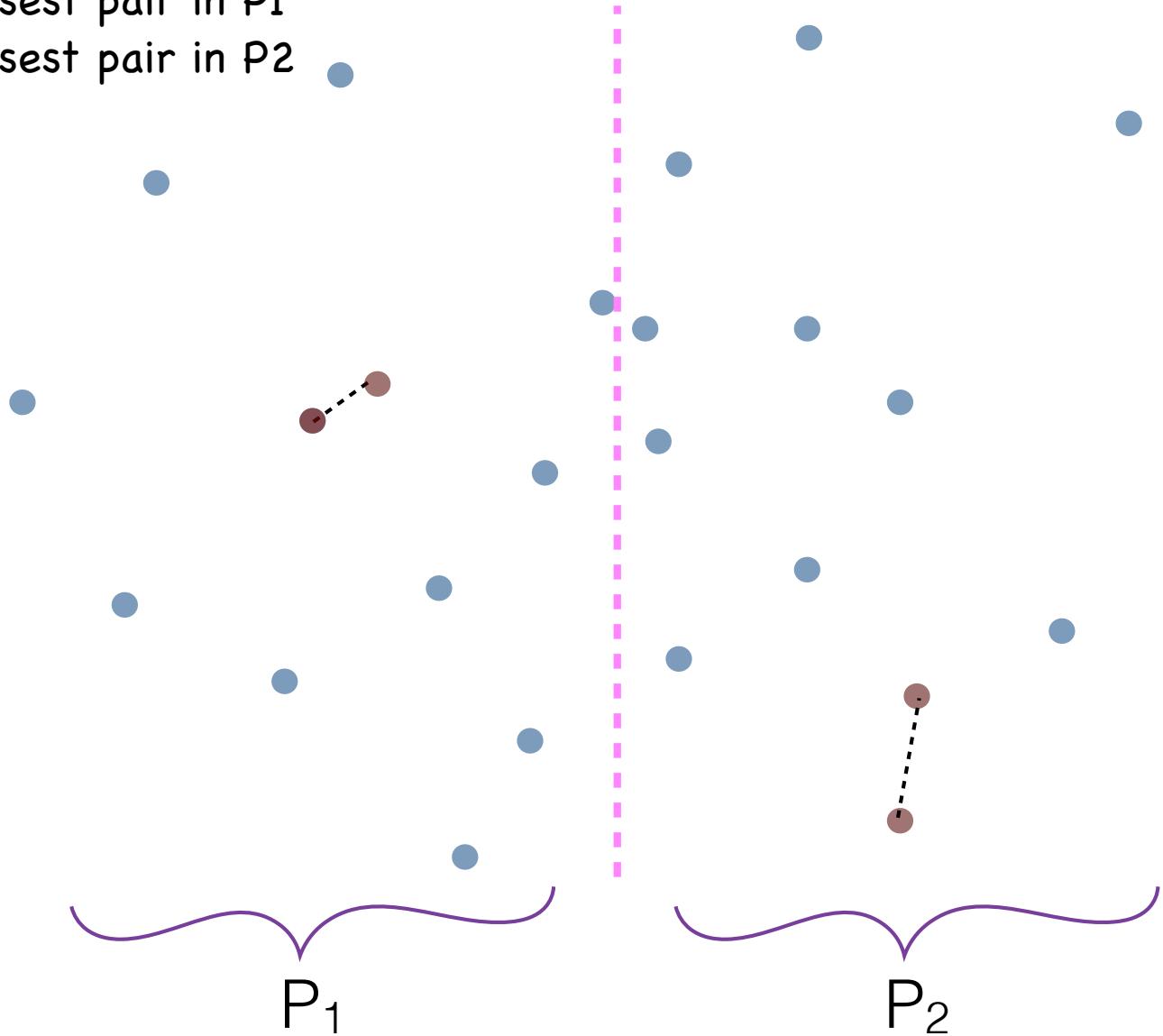
Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P_1, P_2 = set of points to the left/right of line
- recursively find closest pair in P_1



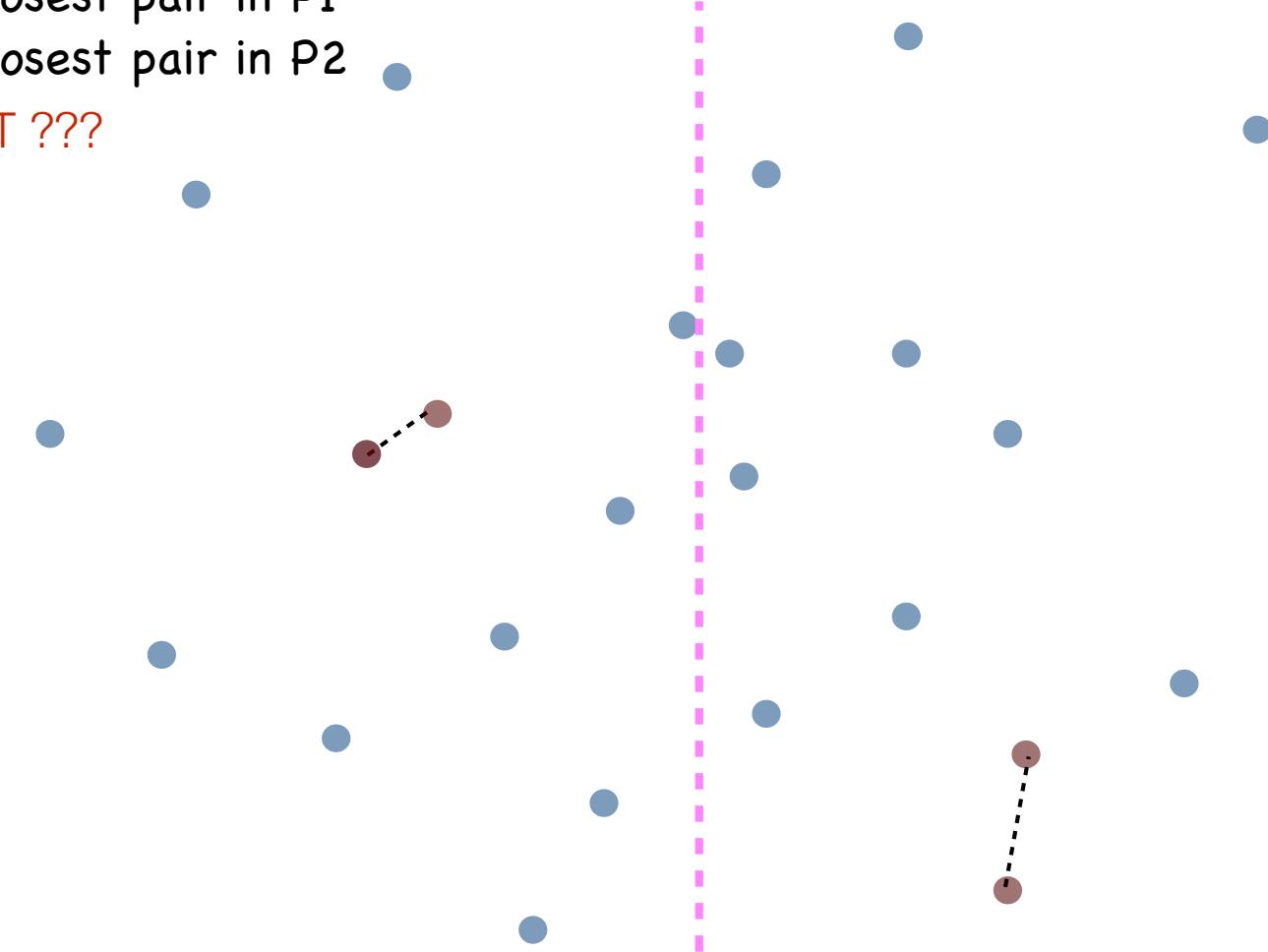
Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P_1, P_2 = set of points to the left/right of line
- recursively find closest pair in P_1
- recursively find closest pair in P_2



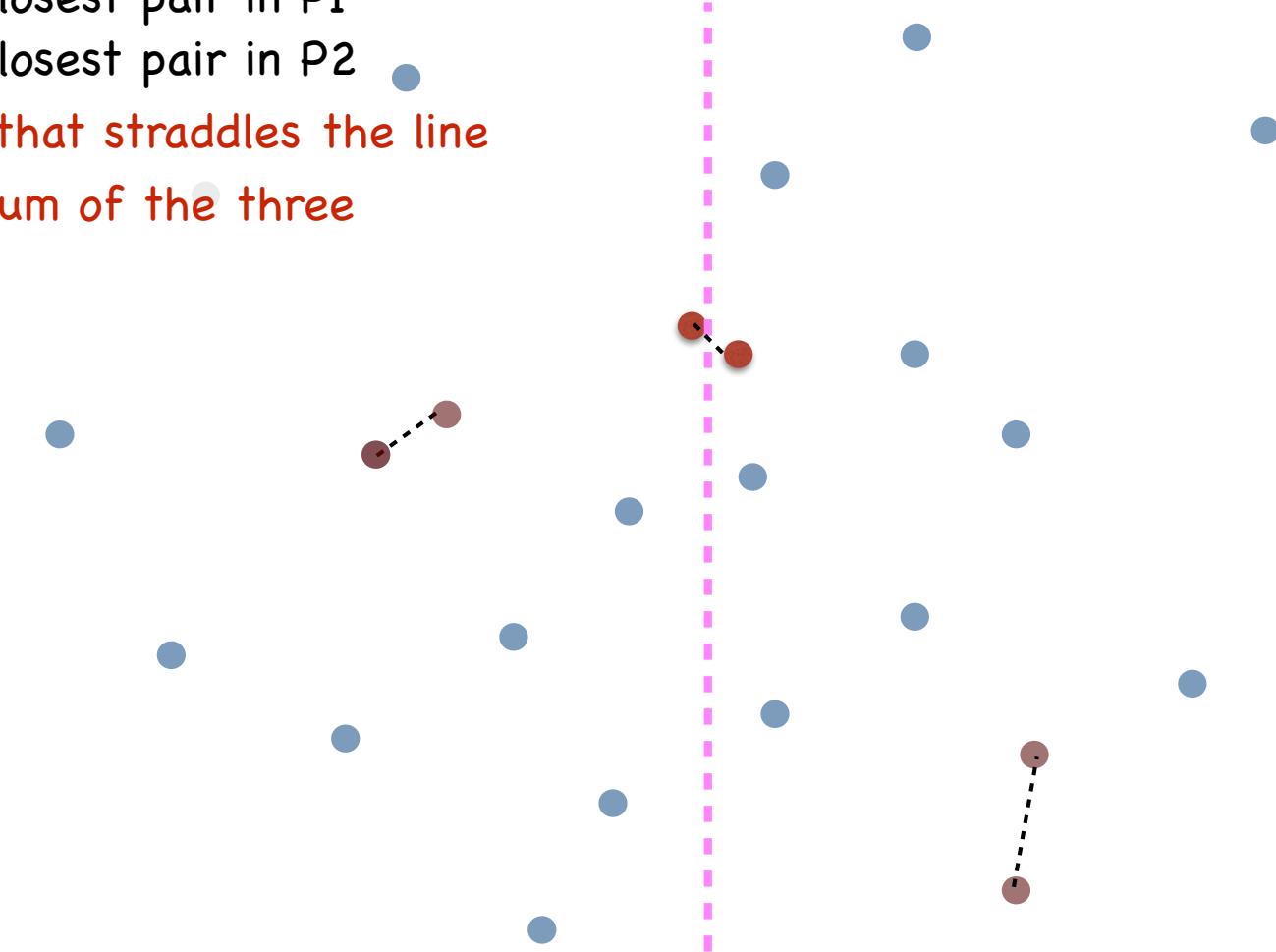
Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P_1, P_2 = set of points to the left/right of line
- recursively find closest pair in P_1
- recursively find closest pair in P_2
- //..... NOW WHAT ???



Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P_1, P_2 = set of points to the left/right of line
- recursively find closest pair in P_1
- recursively find closest pair in P_2
- **find closest pair that straddles the line**
- **return the minimum of the three**



Closest pair, divide-and-conquer

FindClosestPair(P)

//basecase

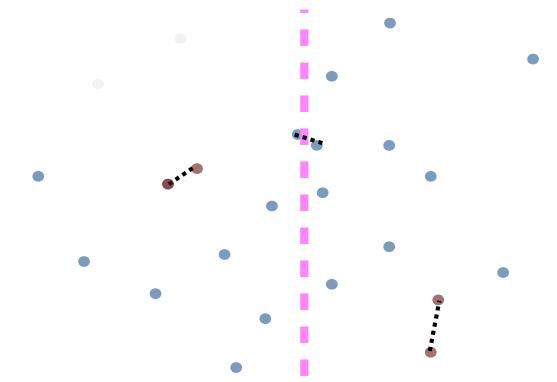
- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
 - find vertical line that splits P in half
 - let P_1, P_2 = set of points to the left/right of line
 - $d_1 = \text{FindClosestPair}(P_1)$
 - $d_2 = \text{FindClosestPair}(P_2)$

//compute closest pair across

- $\text{mindist}=\text{infinity}$
- for each p in P_1 , for each q in P_2
 - compute distance $d(p,q)$
 - $\text{mindist} = \min\{\text{mindist}, d(p,q)\}$

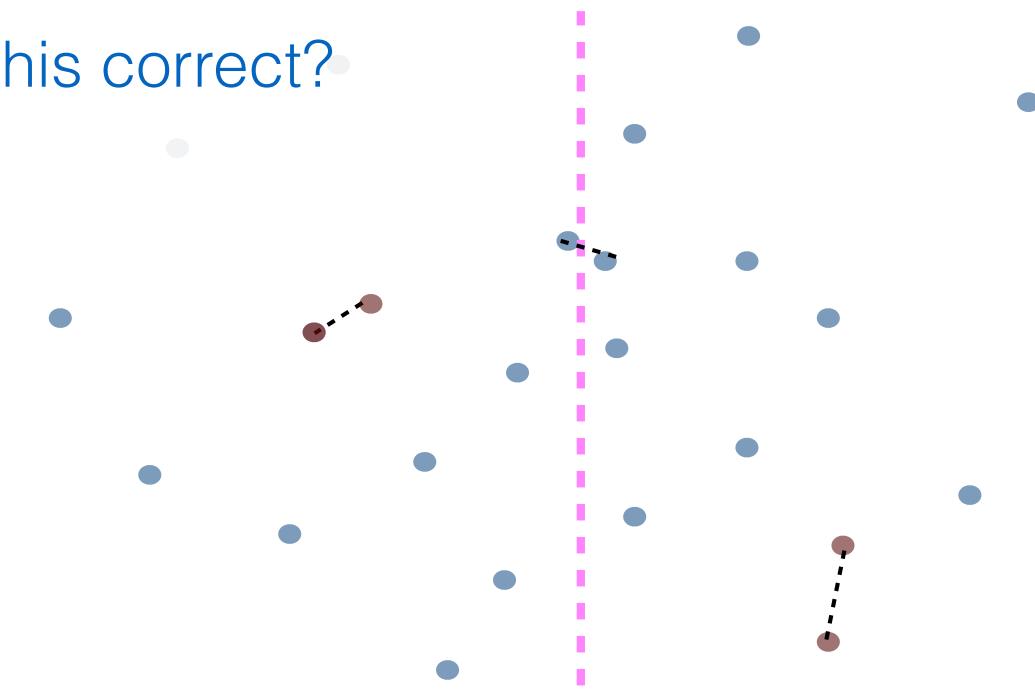
//return smallest of the three

- return $\min \{d_1, d_2, \text{mindist}\}$



1. Is this correct?
2. Running time?

1. Why is this correct?



The closest pair in P falls in one of three cases:

- **Both points are in P1:** then it is found by the recursive call on P1
- **Both points are in P2:** then it is found by the recursive call on P2
- **One point is in P1 and one in P2:** then it is found in the merge phase, because the merge phase considers all such pairs

2. Running time

FindClosestPair(P)

//basecase

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
 - find vertical line that splits P in half
 - let P1, P2 = set of points to the left/right of line
 - $d_1 = \text{FindClosestPair}(P1)$
 - $d_2 = \text{FindClosestPair}(P2)$

$$T(n) = 2T(n/2) + O(n^2)$$

solves to $O(n^2)$

//compute closest pair across

- $\text{mindist}=\text{infinity}$
- for each p in P_1 , for each q in P_2
 - compute distance $d(p,q)$
 - $\text{mindist} = \min\{\text{mindist}, d(p,q)\}$

this merge is too slow

//return smallest of the three

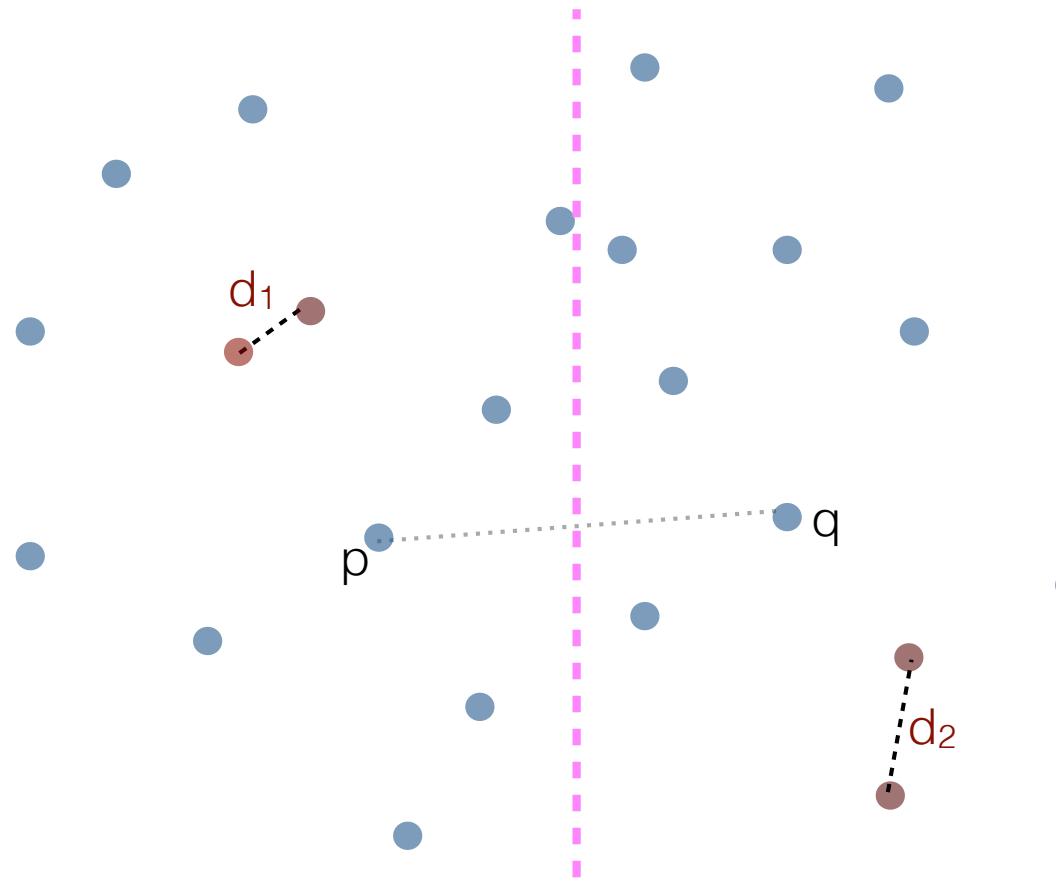
- return $\min \{d_1, d_2, \text{mindist}\}$

Can we do better?

Refining the merge

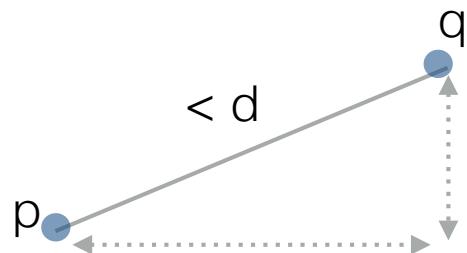
Do we need to examine **all** pairs p, q , with p in P_1 , q in P_2 ?

Which pairs $\{p, q\}$ can be discarded?

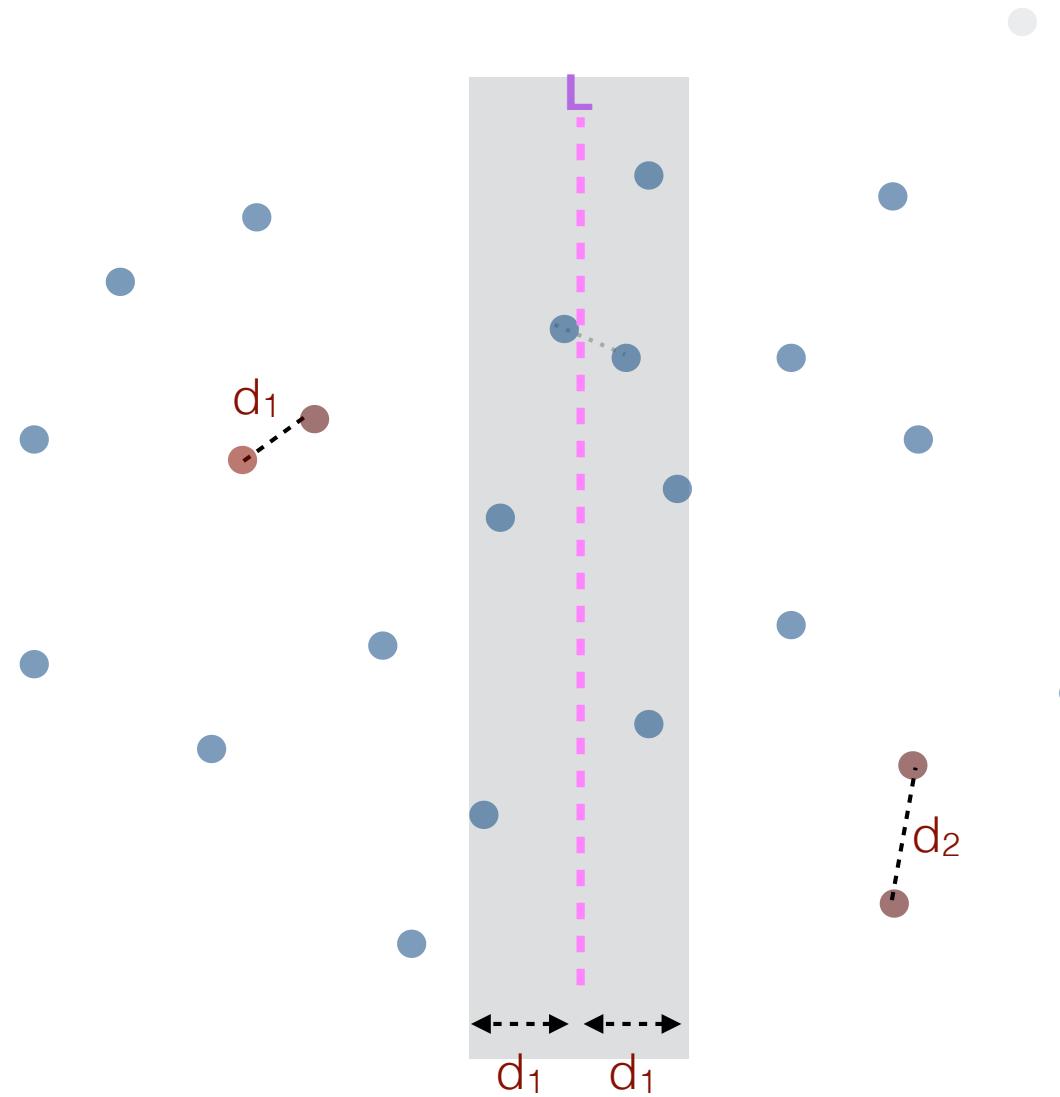


Here's a simple observation

- Notation: $d = \min\{d_1, d_2\}$
- Observation: We are looking for points that are closer than d . If there is a pair of points p, q with $d(p, q) < d$, then both the horizontal and vertical distance between p and q must be smaller than d .



- Notation: $d = \min\{d_1, d_2\}$
- Furthermore, if there is a pair of points p, q with $d(p, q) < d$, then both p and q must be within distance d from line L .



Refining the merge

FindClosestPair(P)

//basecase

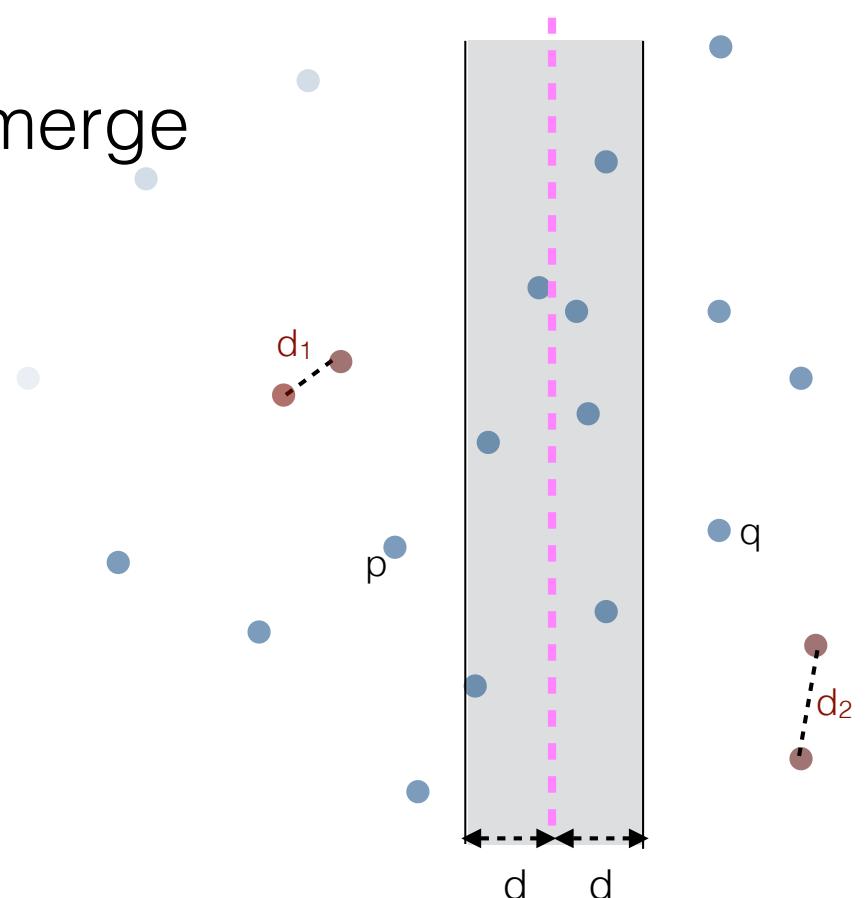
- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
 - find vertical line that splits P in half
 - let P1, P2 = set of points to the left/right of line
 - $d_1 = \text{FindClosestPair}(P1)$
 - $d_2 = \text{FindClosestPair}(P2)$

//compute closest pair across

- $\text{mindist}=\infty$
- ~~for each p in P_1 , for each q in P_2~~
 - compute distance $d(p,q)$
 - $\text{mindist} = \min\{\text{mindist}, d(p,q)\}$

//return smallest of the three

- return $\min \{d_1, d_2, \text{mindist}\}$

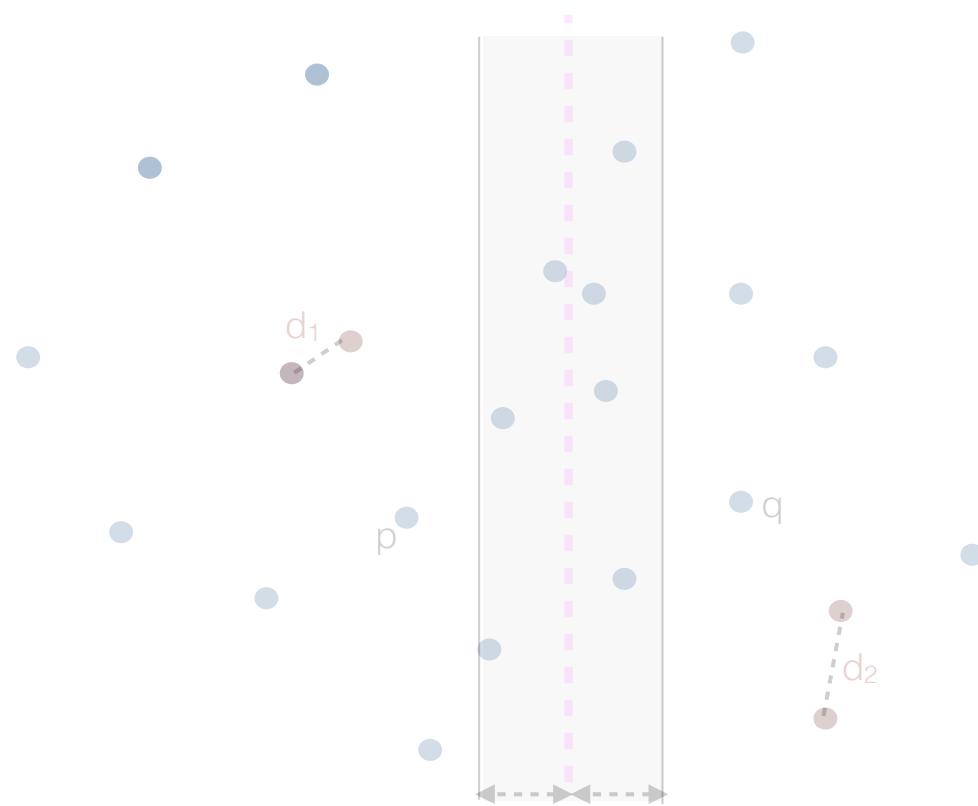


- traverse P_1 and select all points P_1' in the strip
- traverse P_2 and select all points P_2' in the strip
- for each p in P_1' , for each q in P_2'
 - compute distance $d(p,q)$
 - $\text{mindist} = \min\{\text{mindist}, d(p,q)\}$

Running time?

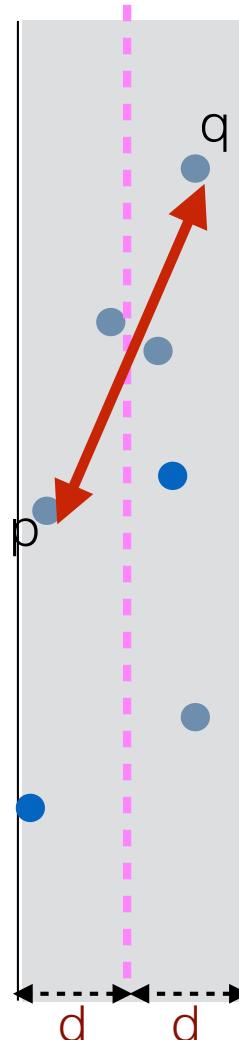
Running time

- How many points can there be in the strip?
- What does this imply for the running time?



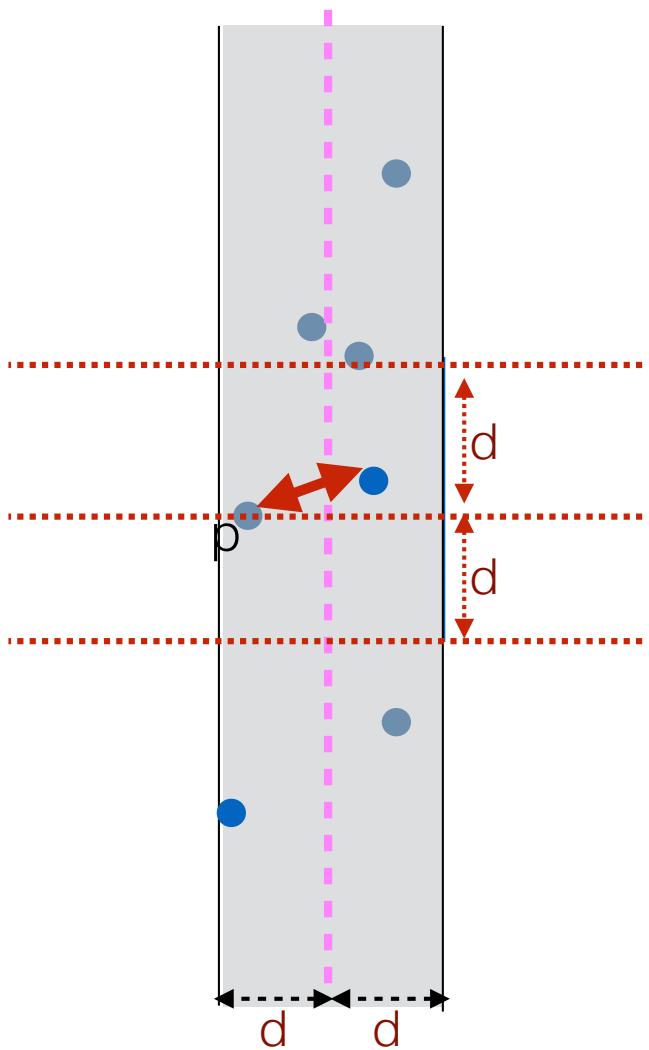
Refining some more

- Using the points in the strip is not enough, there can still be $\Omega(n)$ of them
- Note that the strip contains candidate pairs that could be within distance d of each other **horizontally**
- We haven't used yet that candidate pairs have to be within distance d of each other **vertically**



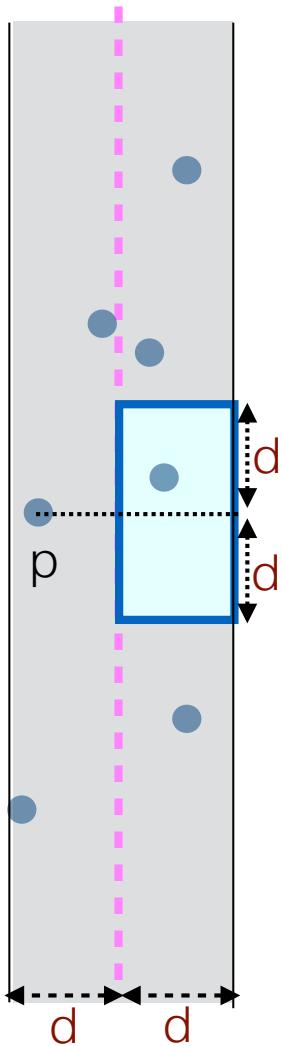
(p, q) not a candidate pair because their
vertical distance $> d$

Refining some more



We are interested in the points q of P_2'
whose distance to p is $< d$

These points are vertically above or below
 p by **at most d**



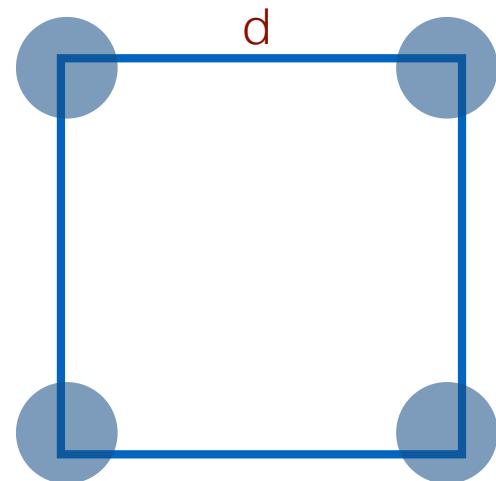
- For a point p in P_1' : We only need to check the points on the other side that are vertically at most d above/below p
- How many such points can there be?

Let P be a set of points such that any two points are at least d away from each other.

Claim: Then any square with side d contains at most _____ points of P .

Let P be a set of points such that any two points are at least d away from each other.

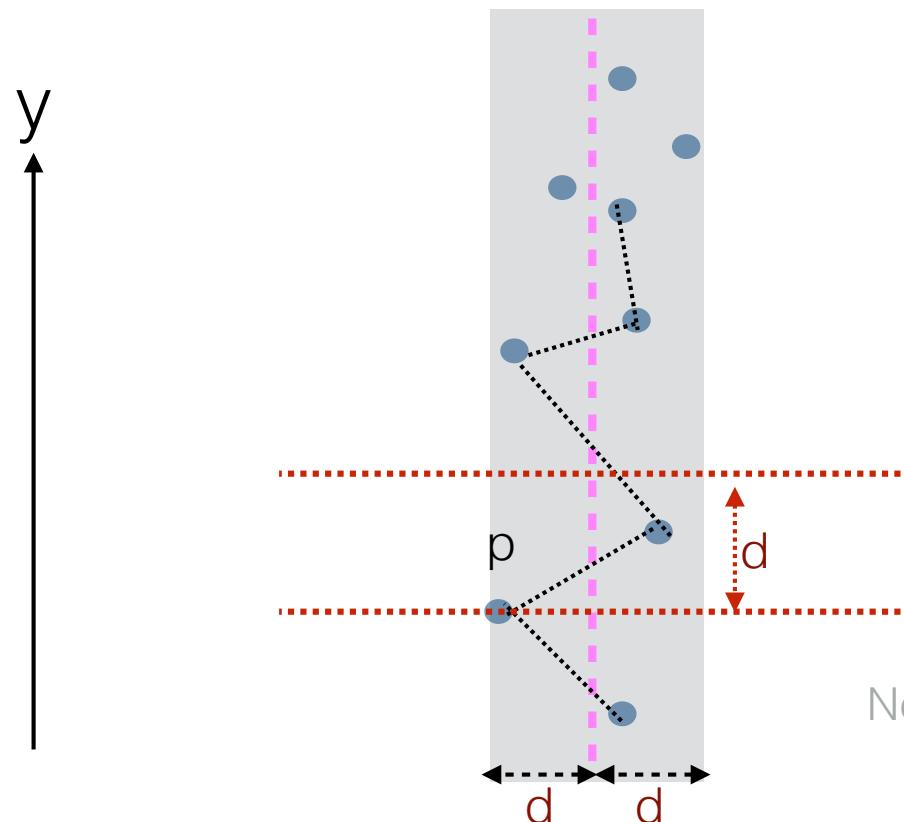
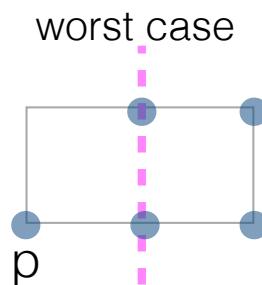
Claim: Then any square with side d contains at most **4** points of P .



The new merge

- Traverse the points in P_1' and P_2' in increasing order of their y-coordinate
- Mimic the process of merging P_1' and P_2' in y-order
- Consider the next point p in y-order and let's say it comes from P_1'
 - p will check only the points in P_2' above it (following it in y-order) that are within d

//There can be at most 4 subsequent points in P_2' that are within d from p .



Note: Assume no duplicate points.

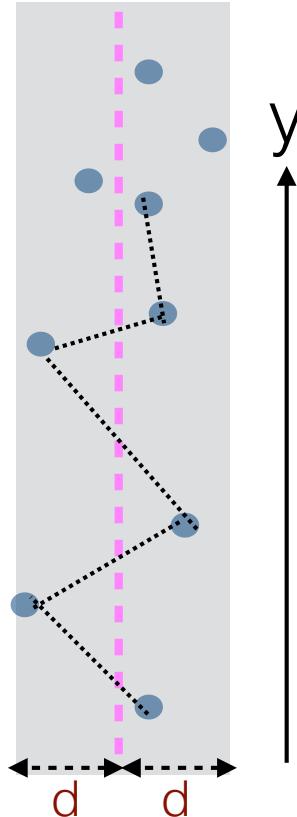
closestPair(P)

//divide

- find vertical line l that splits P in half
- let P_1, P_2 = set of points to the left/right of line
- $d_1 = \text{closestPair}(P_1)$
- $d_2 = \text{closestPair}(P_2)$

//refined merge

- let $d = \min\{d_1, d_2\}$
- for all p in P_1 : if $x_p > x_l - d$: add p to Strip1
- for all p in P_2 : if $x_p < x_l + d$: add p to Strip2
- sort Strip1, Strip2 by y-coord
- initialize mindist= d
- merge Strip1, Strip2: for next point p ,
 - compute its distance to the 4 points that come after it on the other side of the strip
 - if any of these is smaller than mindist, update mindist
- return $\min\{d_1, d_2, \text{mindist}\}$



Analysis: $T(n) = 2T(n/2) + O(n \lg n) \Rightarrow O(n \lg^2 n)$

Can we do better?

We'd love to get rid of the extra $\lg n$

Refining the refined merge

- Instead of **sorting inside every merge**, we'll pre-sort P **once** at the beginning
 - sort by x-coord: P_X note: sorting by x is not necessary but practical
 - sort by y-coord: P_Y ..

closestPair(P_X , P_Y)

- These sorted list will be maintained through the recursion

Refining the refined merge

closestPair(PX, PY)

//divide

- find vertical line L that splits P in half
- let P_1, P_2 = set of points to the left/right of line \leftarrow We need to get $P1X, P1Y, P2X, P2Y$
- $d_1 = \text{closestPair}(P_1)$ $\text{closestPair}(P1X, P1Y)$
- $d_2 = \text{closestPair}(P_2)$ $\text{closestPair}(P2X, P2Y)$

//merge

- let $d = \min\{d_1, d_2\}$ Traverse P1Y: if $x_p > x_L - d$: add p to Strip1
- ~~for all p in P_1 : if $x_p > x_L - d$: add p to Strip1~~
- ~~for all p in P_2 : if $x_p < x_L + d$: add p to Strip2~~
- ~~sort Strip1, Strip2 by y-coord~~ //Strip1, Strip2 are y-sorted!
- initialize mindist=d
- merge Strip1, Strip2: for next point p,
 - compute its distance to the 5 points that come after it on the other side of the strip
 - if any of these is smaller than mindist, update mindist
- return $\min\{d1, d2, mindist\}$

Analysis: $T(n) = 2T(n/2) + O(n) \implies O(n \lg n)$

Hooray!

Almost there..

- A few more details to think about
 - We have PX, PY
 - We need to:
 - Find the vertical line that splits P in half.
 - Get P1X, P2X.
 - Get P1Y, P2Y.