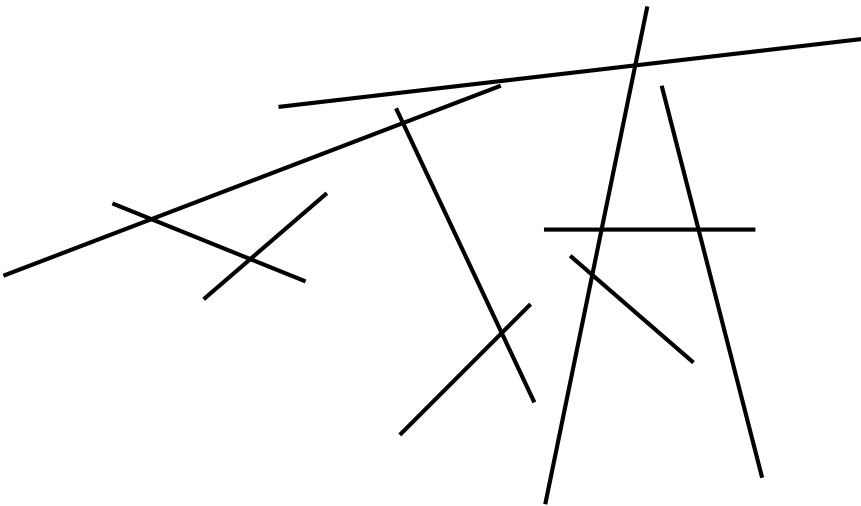


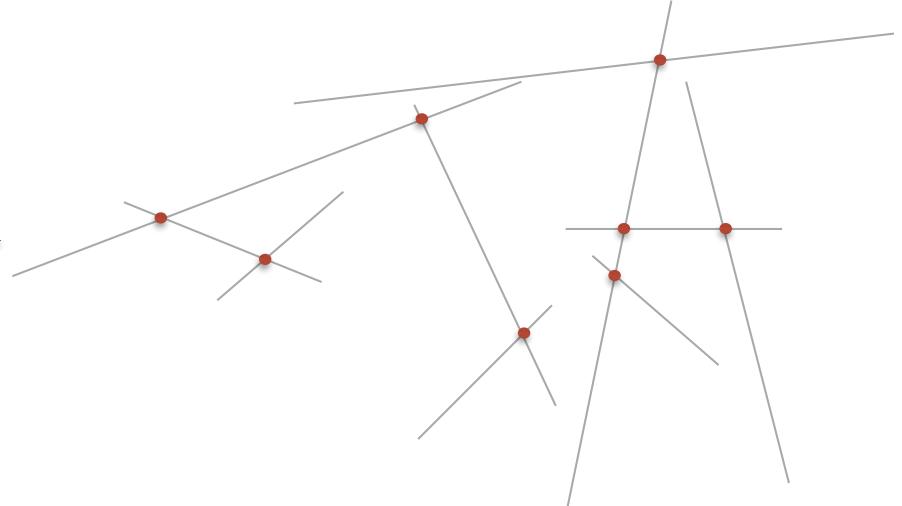
Line segment intersection

Line segment intersection

Given a set of n line segments in the plane



Find all their intersection points

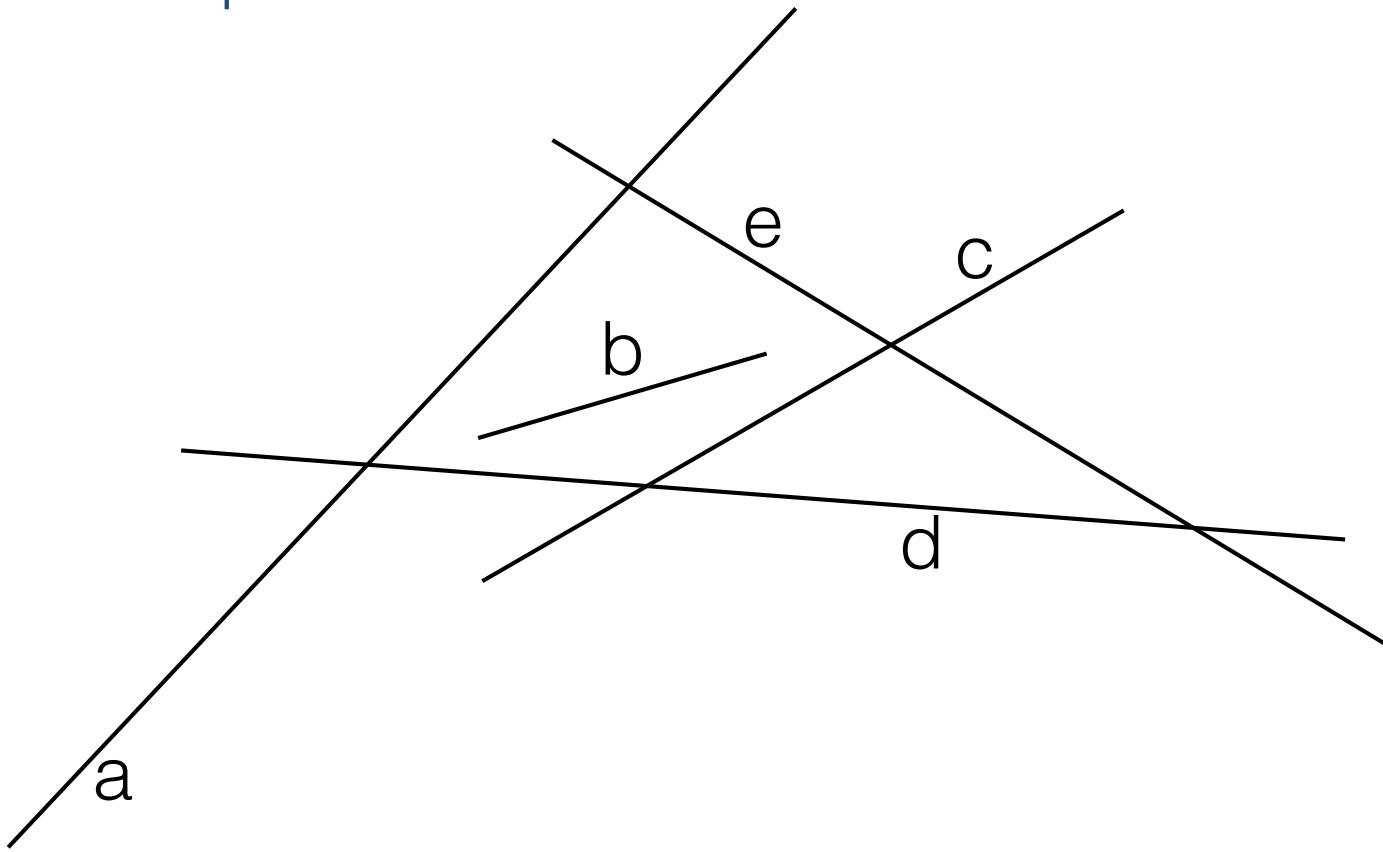


- n : size of the input (number of segments)
- k : size of output (number of intersections)

Overview

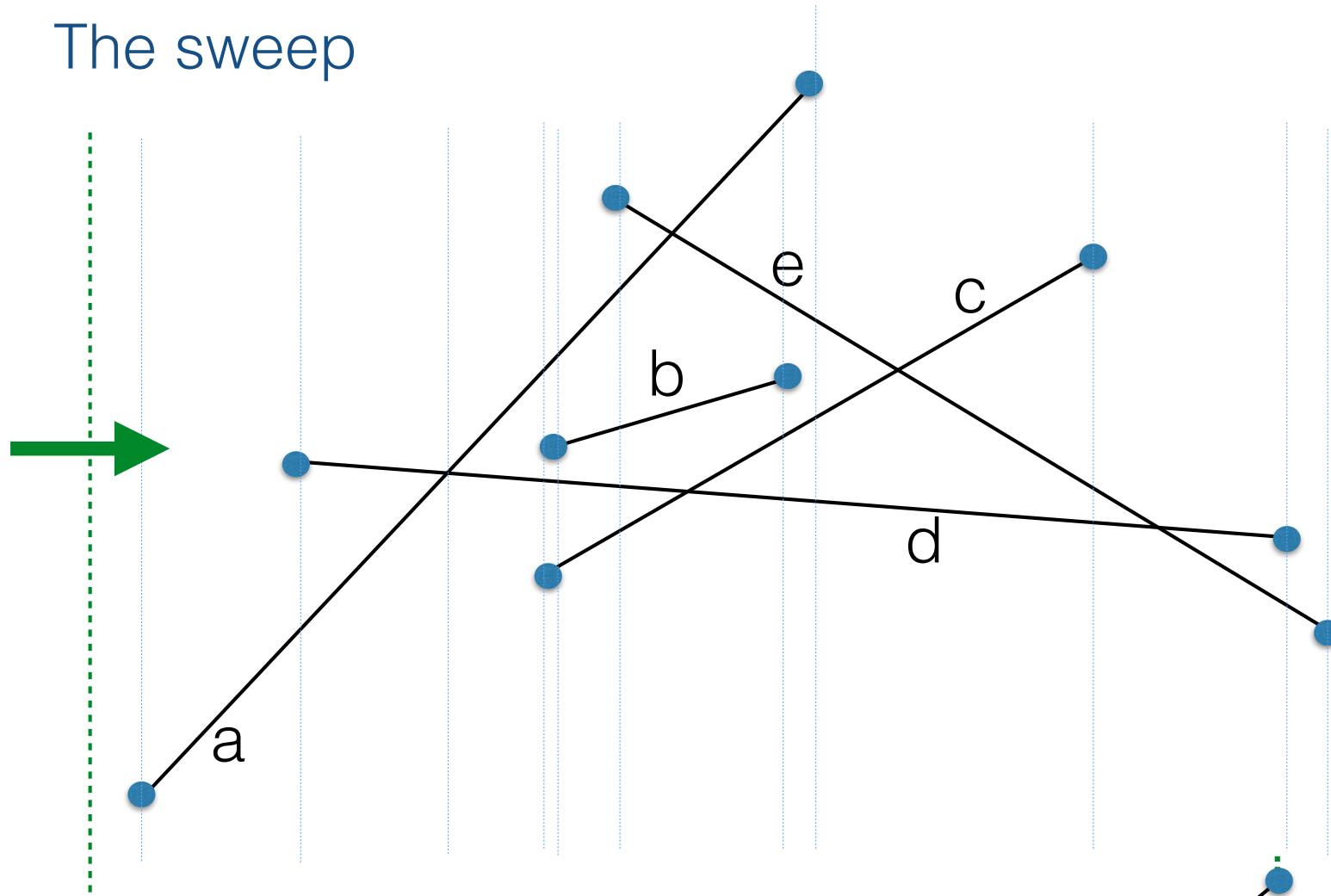
- Approach: line sweep
- We'll get an overall bound of $O(n \lg n + k \lg n)$
 - this improves on the naive $O(n^2)$ when k is small
- The algorithm was developed by Jon Bentley and Thomas Ottman in 1979
- Simple (..in retrospect!), elegant and practical

The sweep



- Let X be the set of all x-coords of segments

The sweep

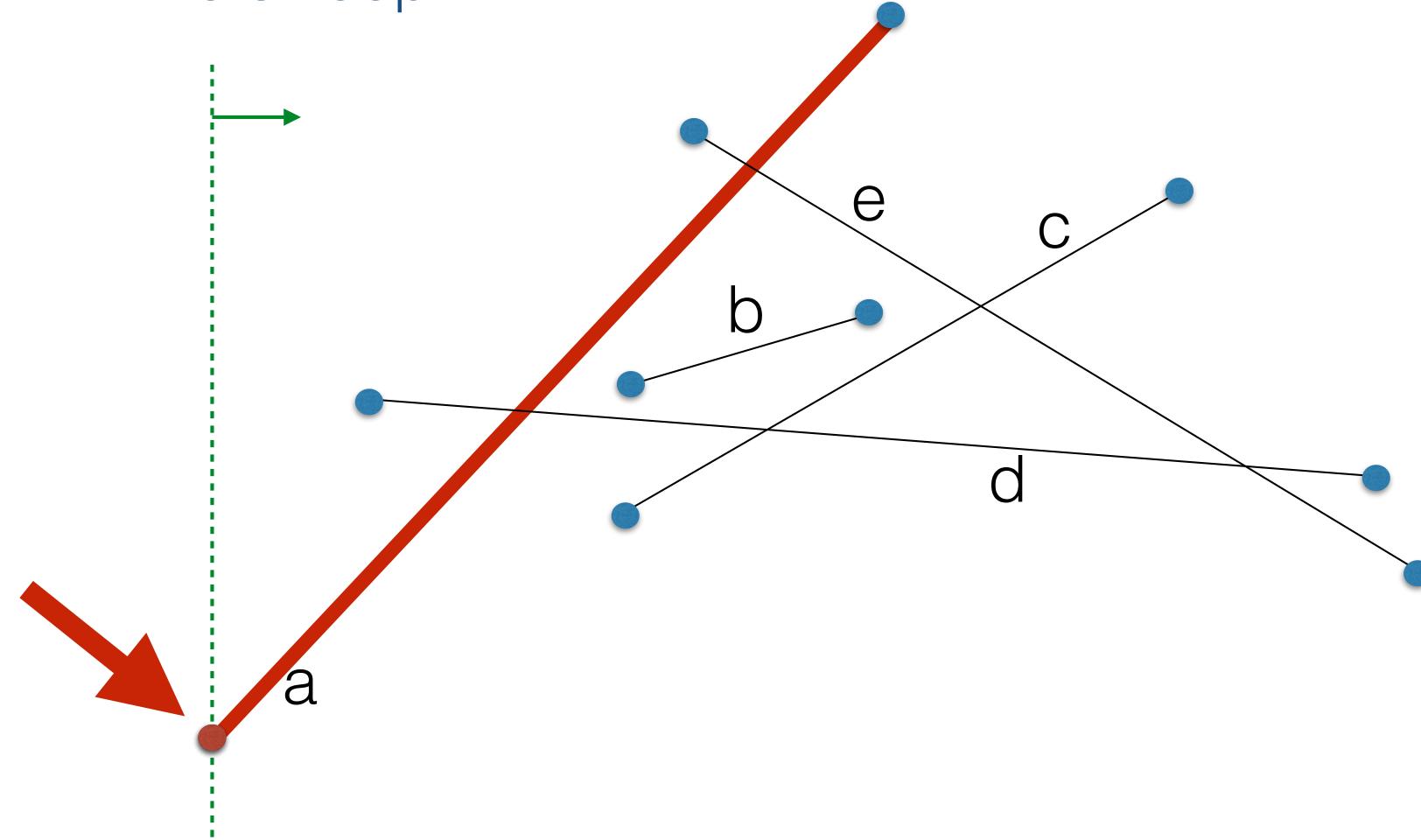


- Let X be the set of all x-coords of segments
- Traverse the events in X in order

becomes active:
insert

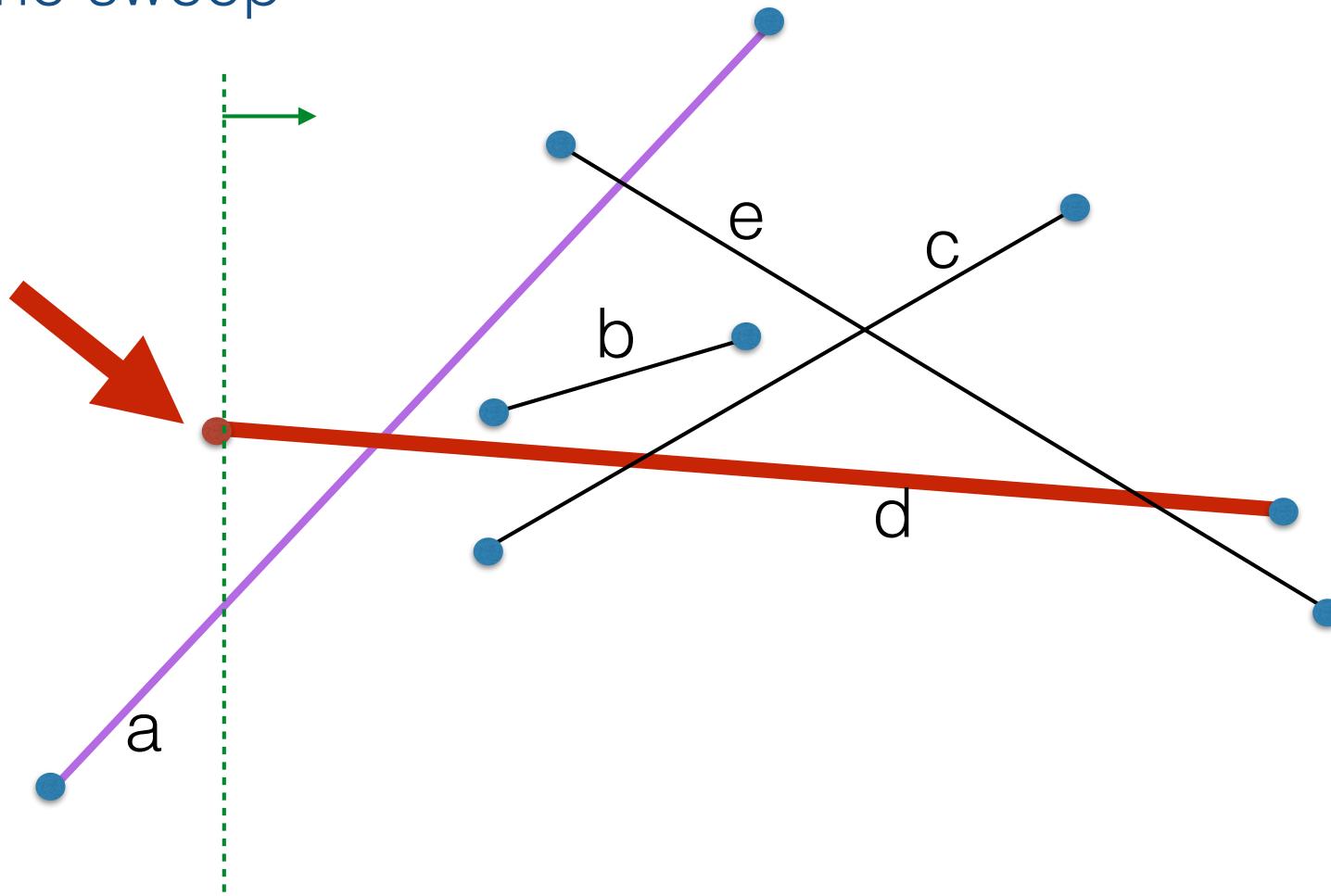
stops being active:
delete

The sweep



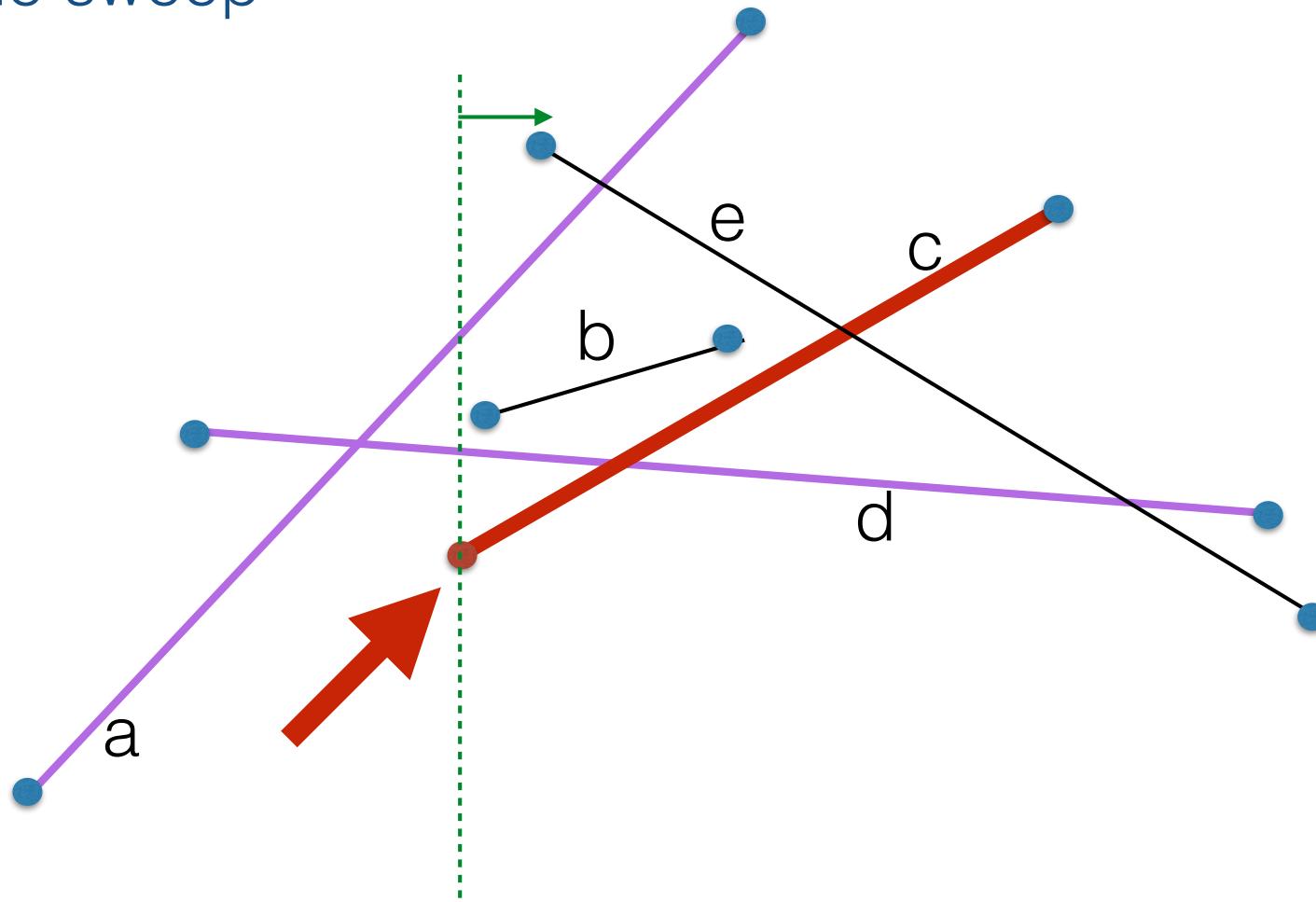
- a.start:
 - segment a becomes active
 - it will stay active until sweep line reaches a.end

The sweep



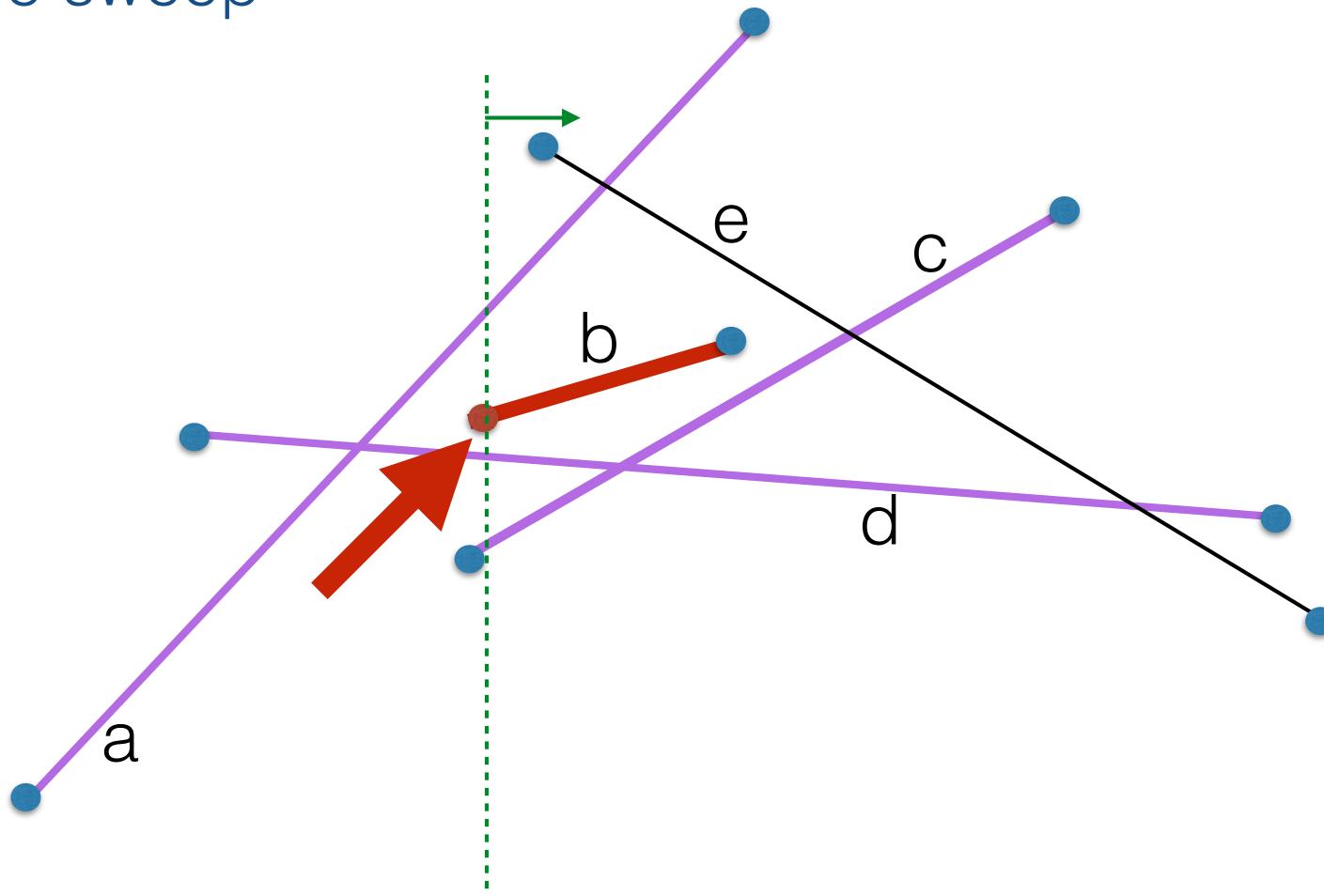
- d.start
 - segment d becomes active
 - it will stay active until sweep line reaches d.end

The sweep



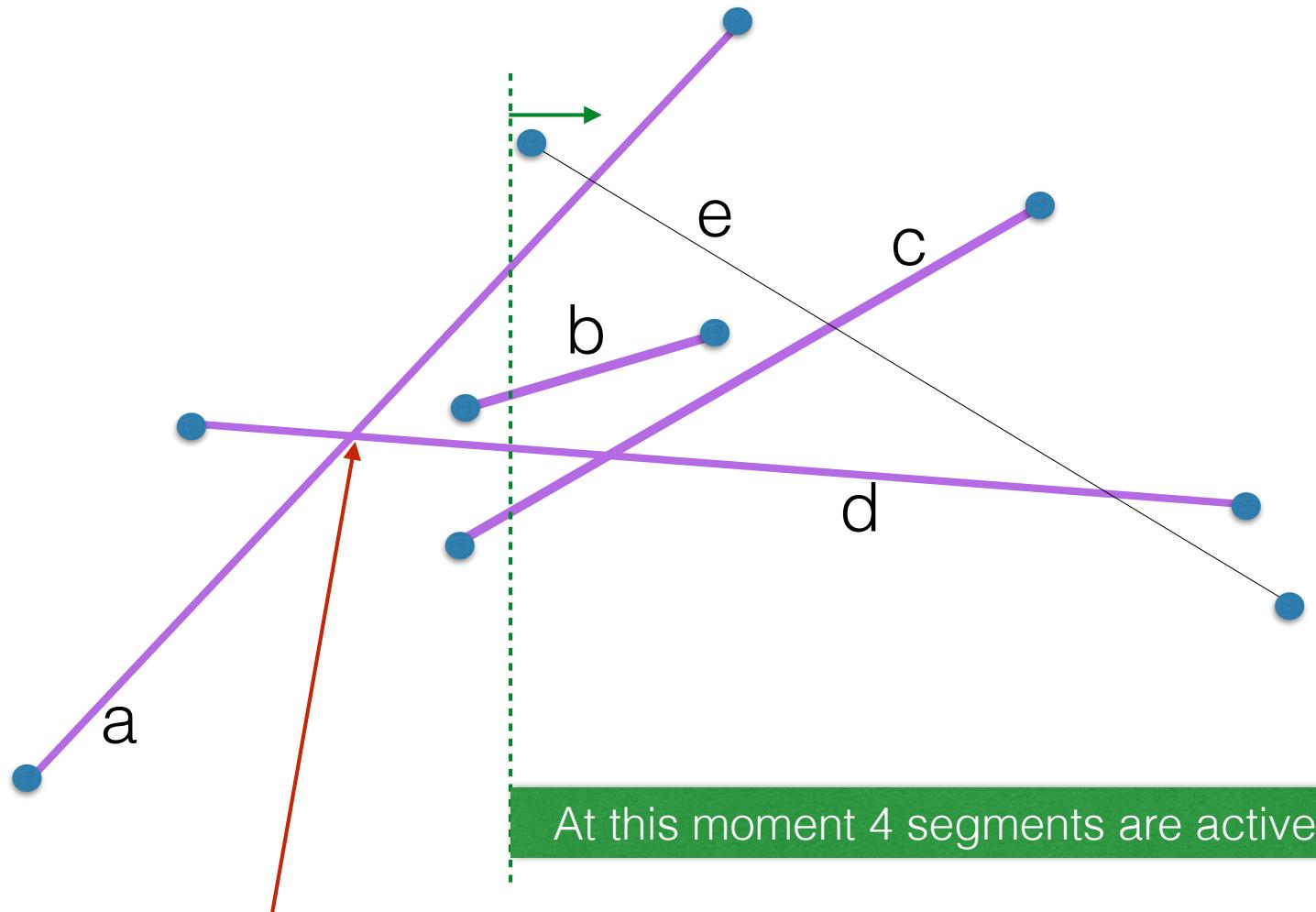
- c.start
 - segment c becomes active
 - it will stay active until sweep line reaches c.end

The sweep



- b.start

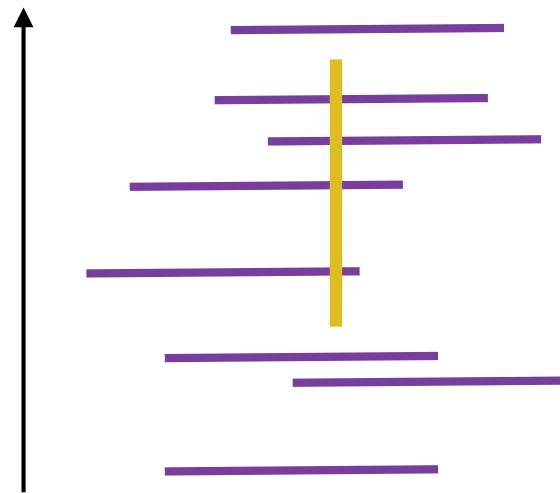
How do we detect intersections during the sweep?



How could we have detected this?

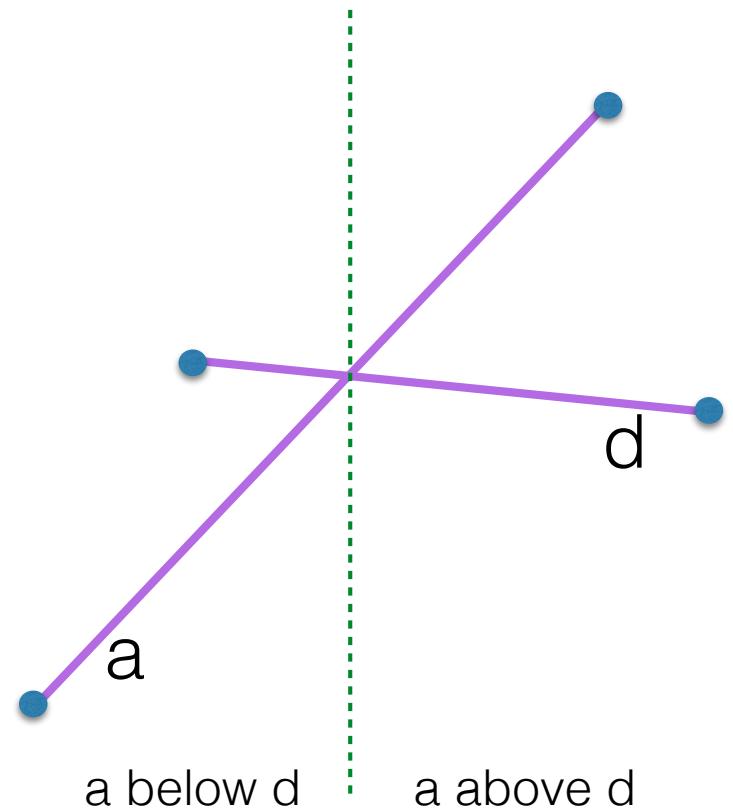
Key idea #1

orthogonal segments



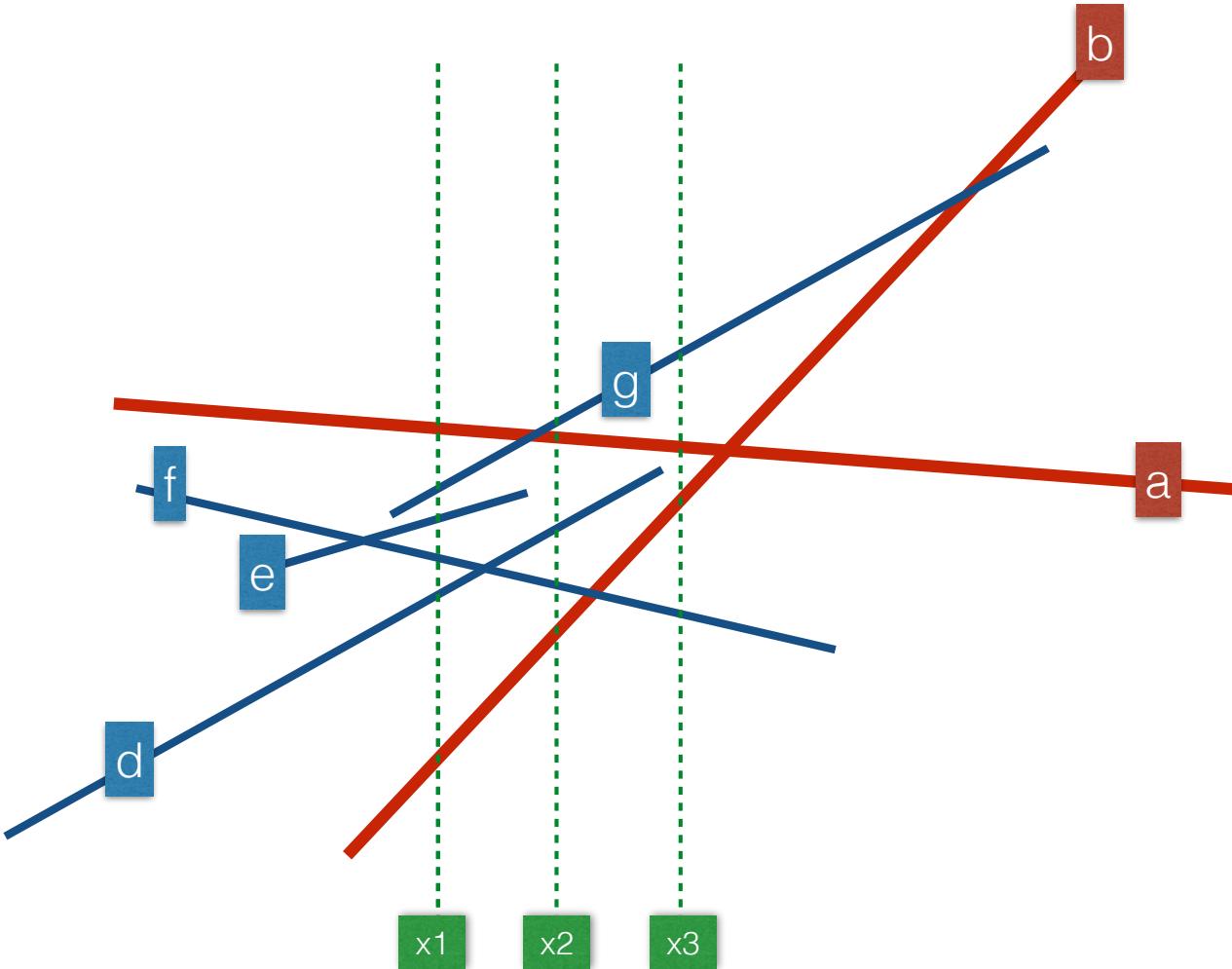
horizontal segments in y-order

general segments



above-below order flips at intersection point!

Key idea #2

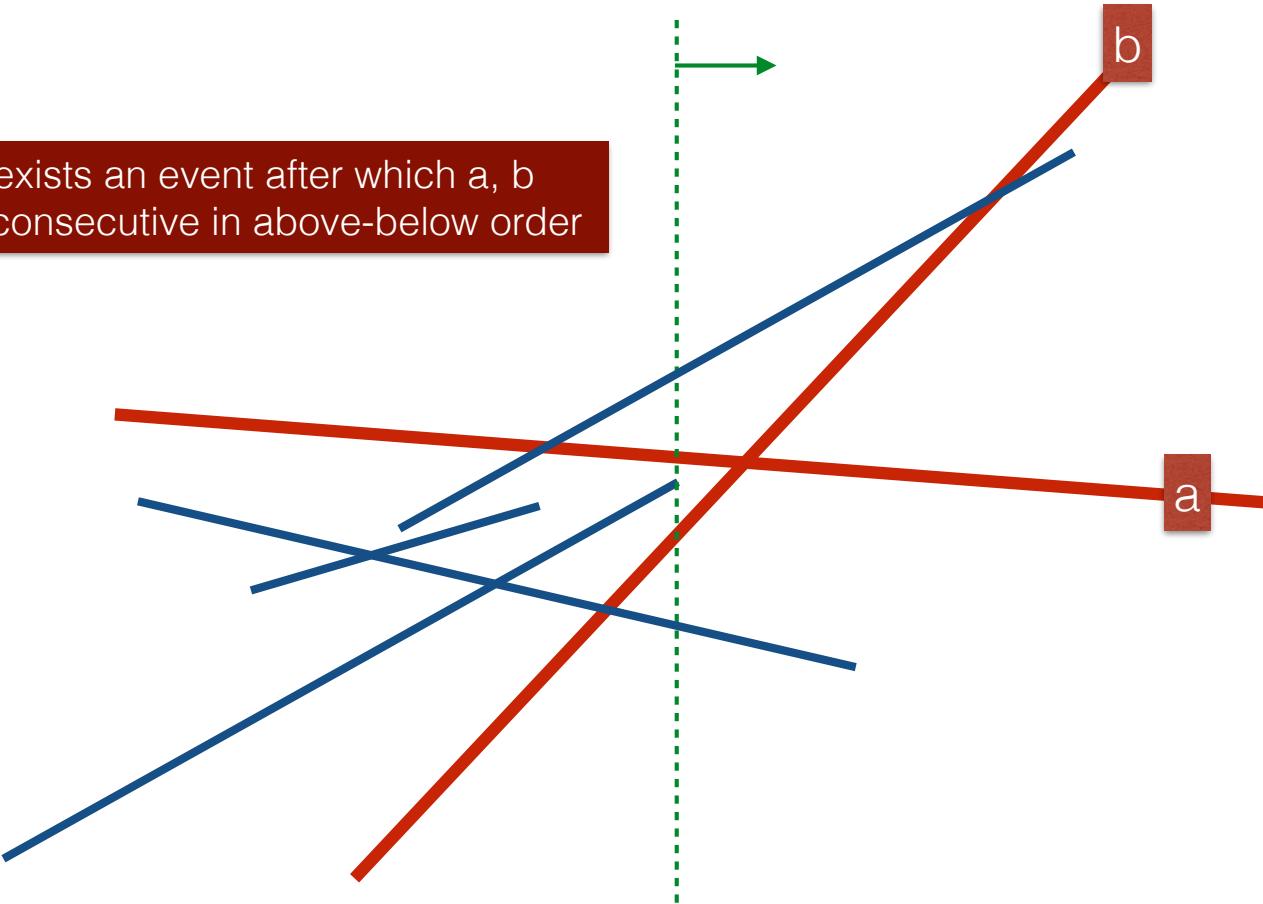


- Write the segments in above-below order at x1, x2 and x3

Key idea #2

- Segments that intersect are consecutive in above-below order just before they intersect

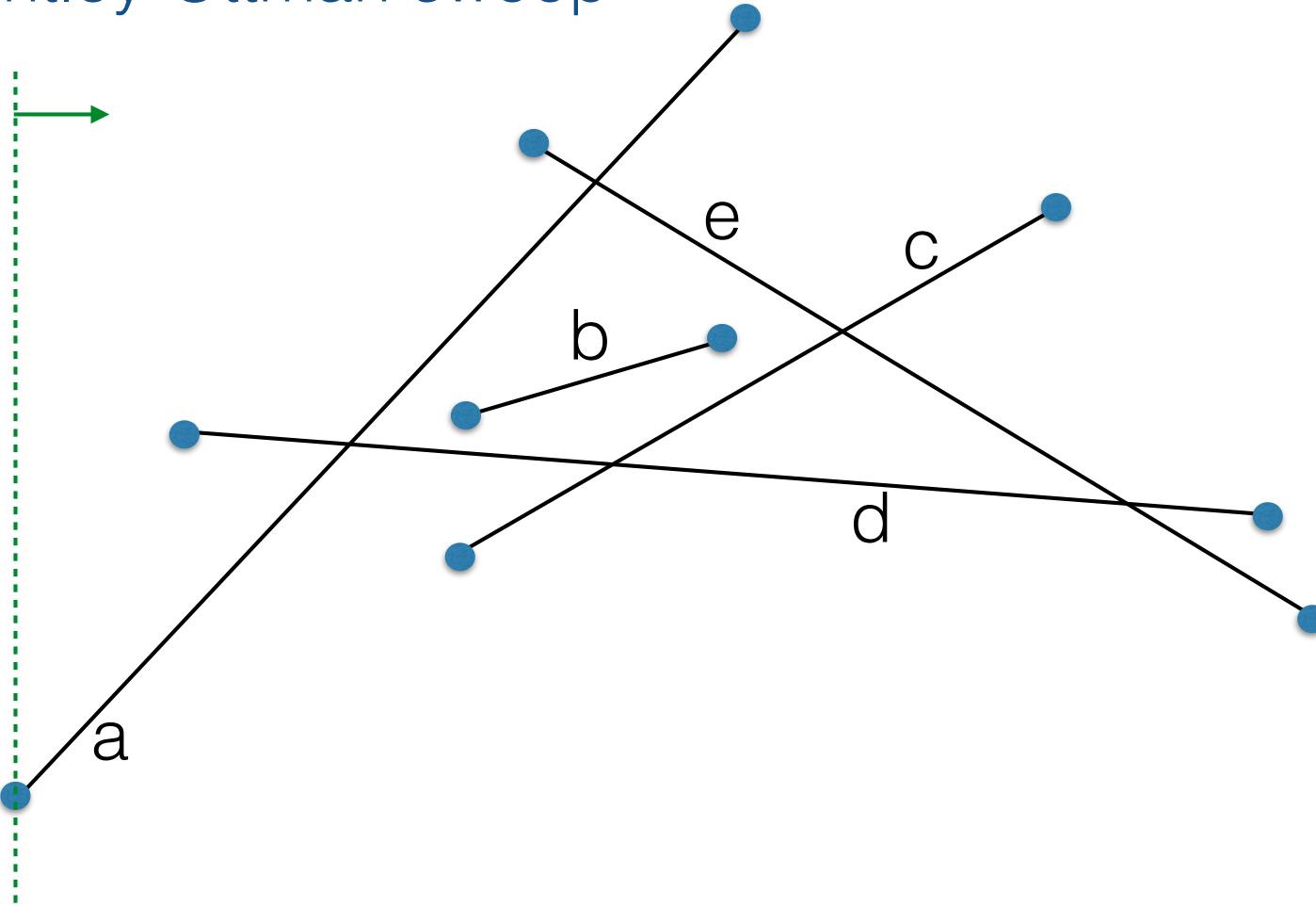
There exists an event after which a, b become consecutive in above-below order



- Strategy: Throughout the sweep, we'll check for intersection all pairs of segments that are consecutive in above-below order. This way we cannot miss any intersection!

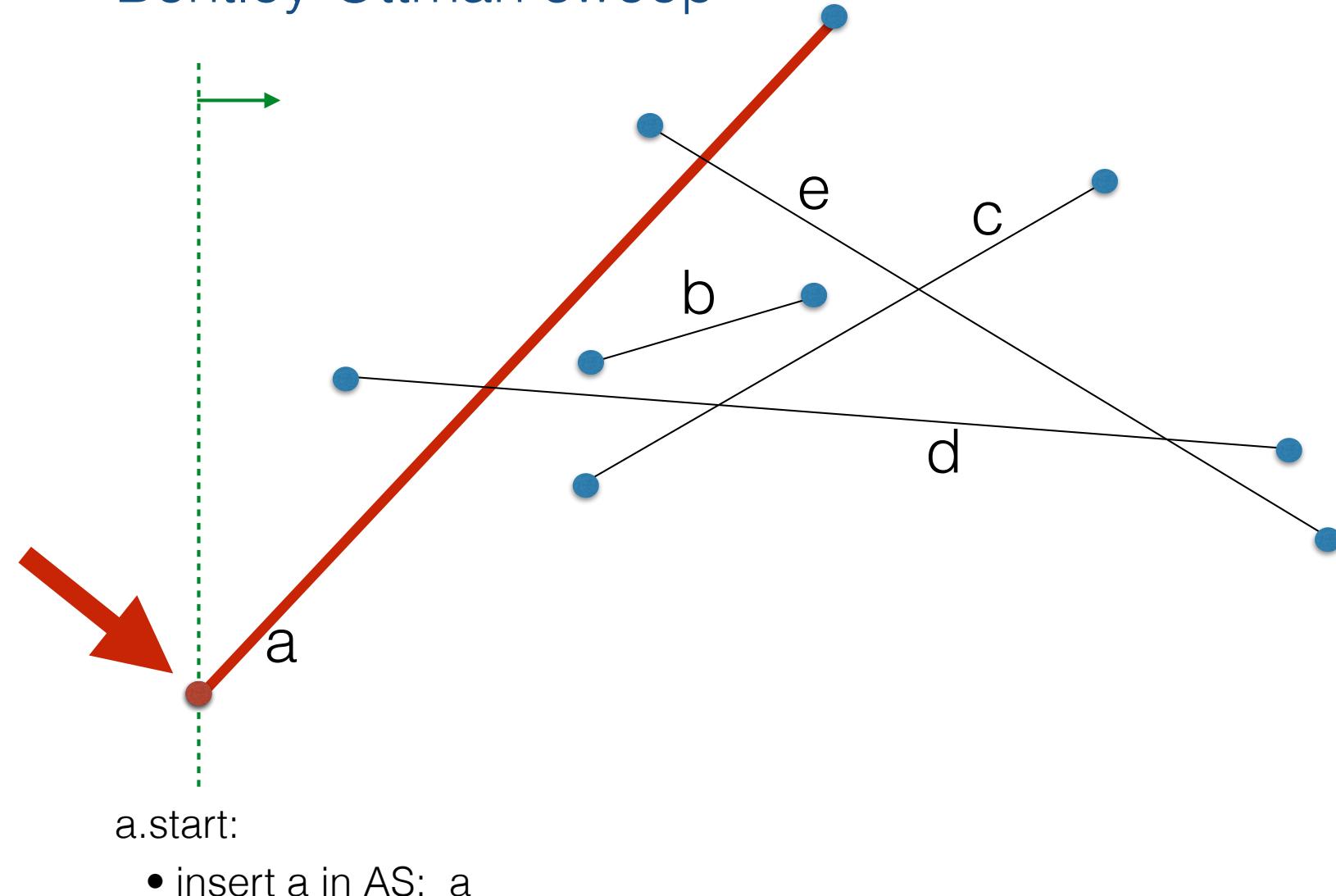
Let's start over..

Bentley-Ottman sweep

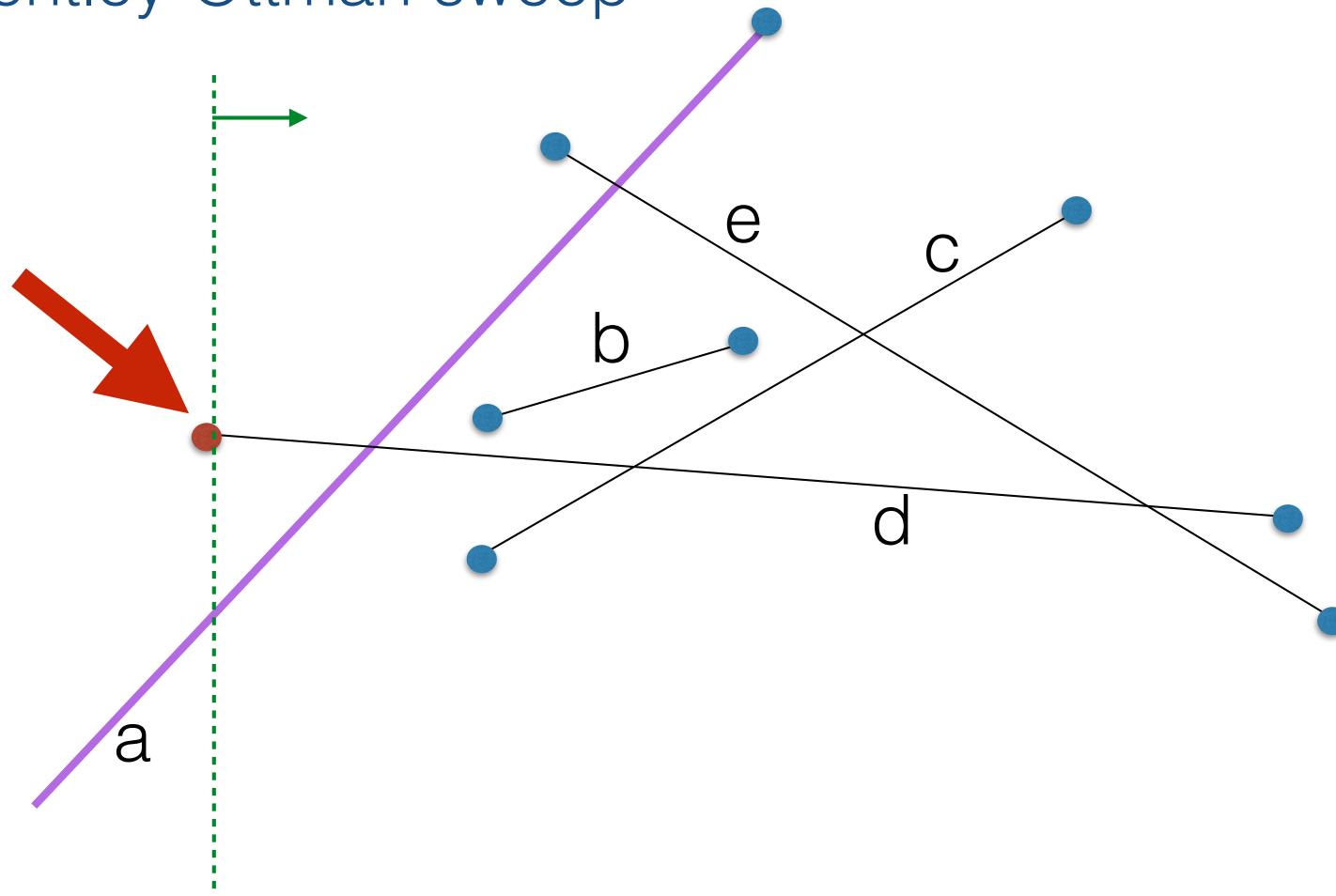


- Let X be the set of all x-coords of segments
- Initialize active structure: $AS = \{\}$
- Traverse events in order

Bentley-Ottman sweep

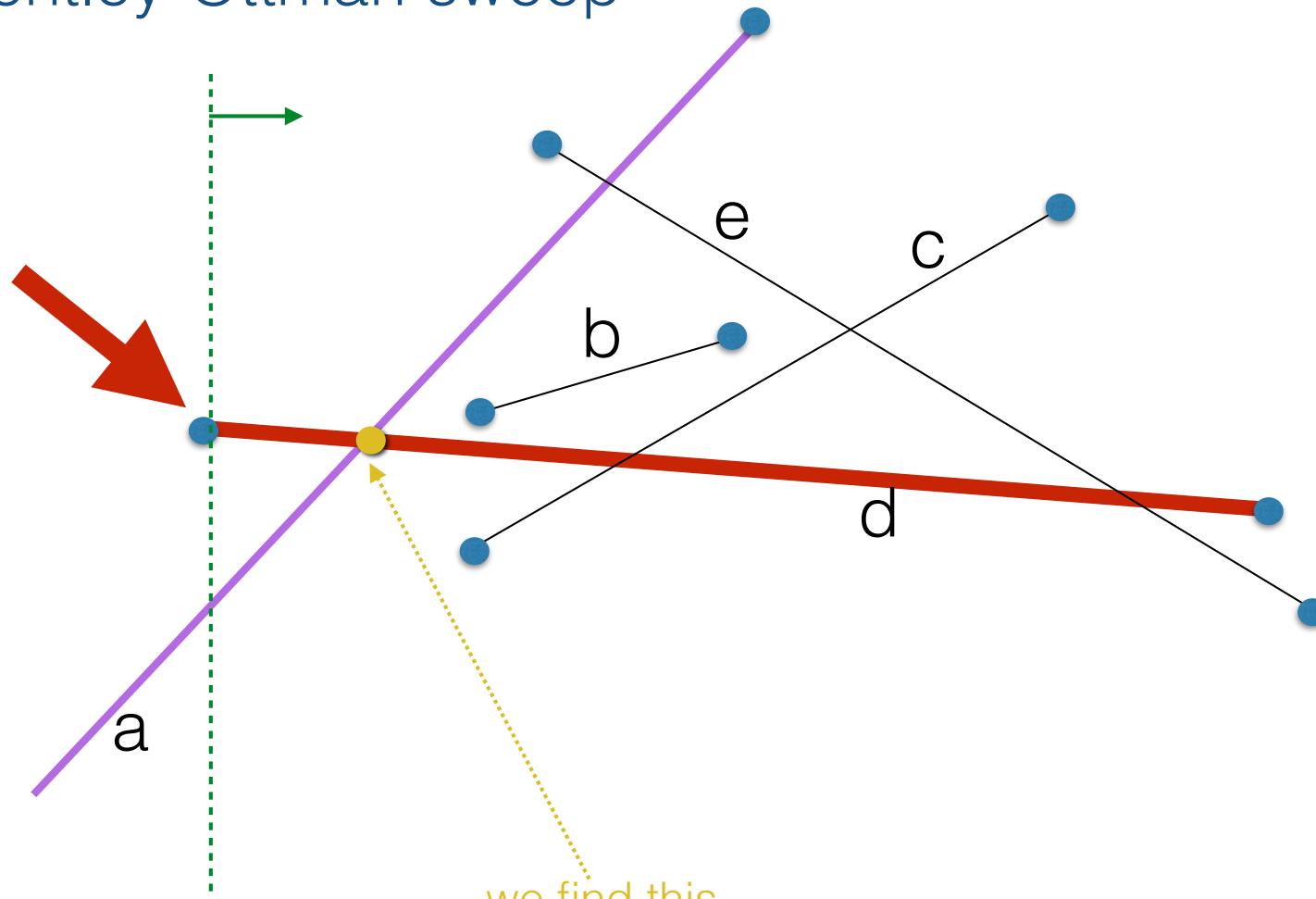


Bentley-Ottman sweep



d.start:

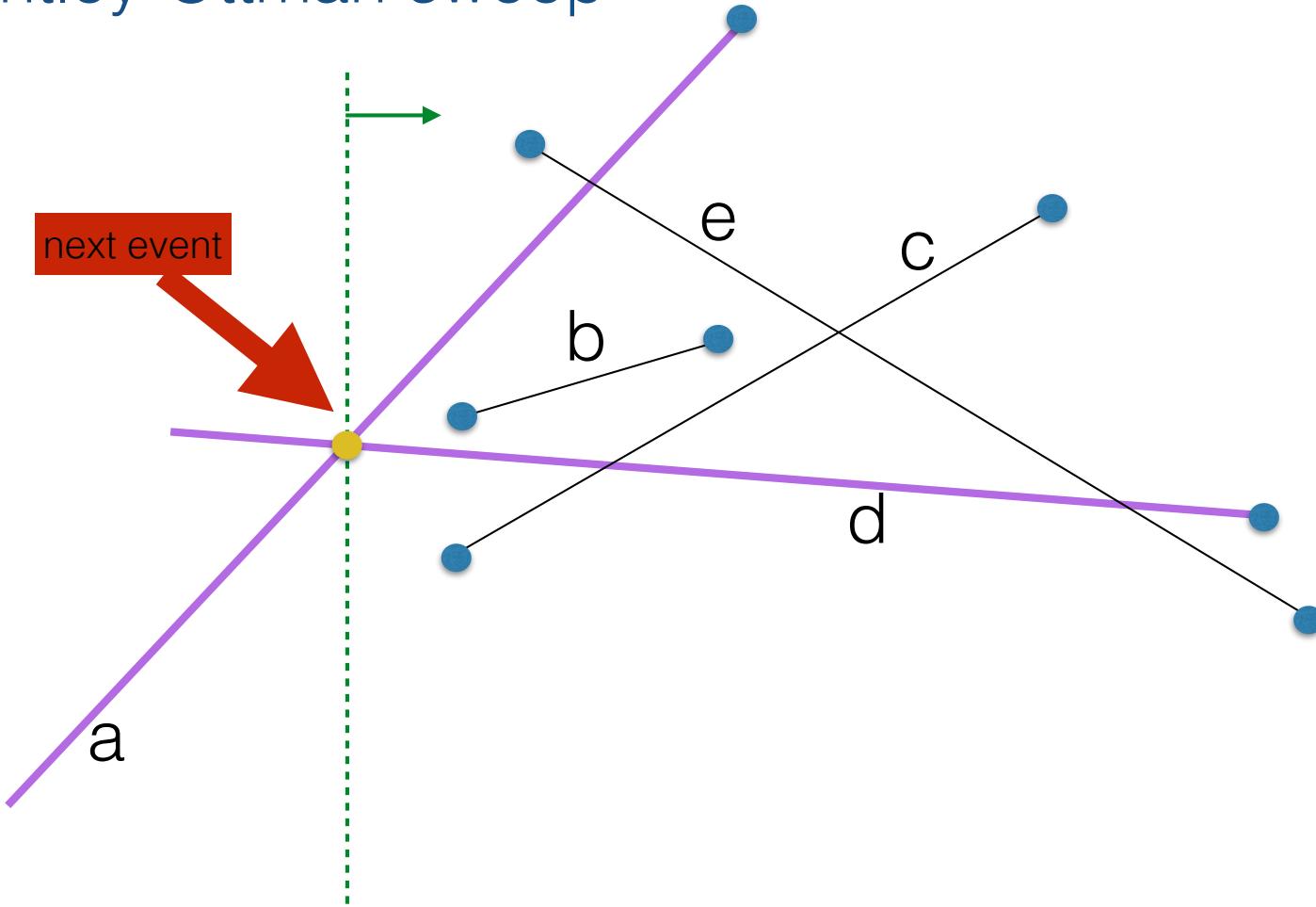
Bentley-Ottman sweep



d.start:

- insert d in AS: **a** < d
- a,d consecutive: check if (a,d) intersect to the right of the line; they do; report point and insert it in the list of future events

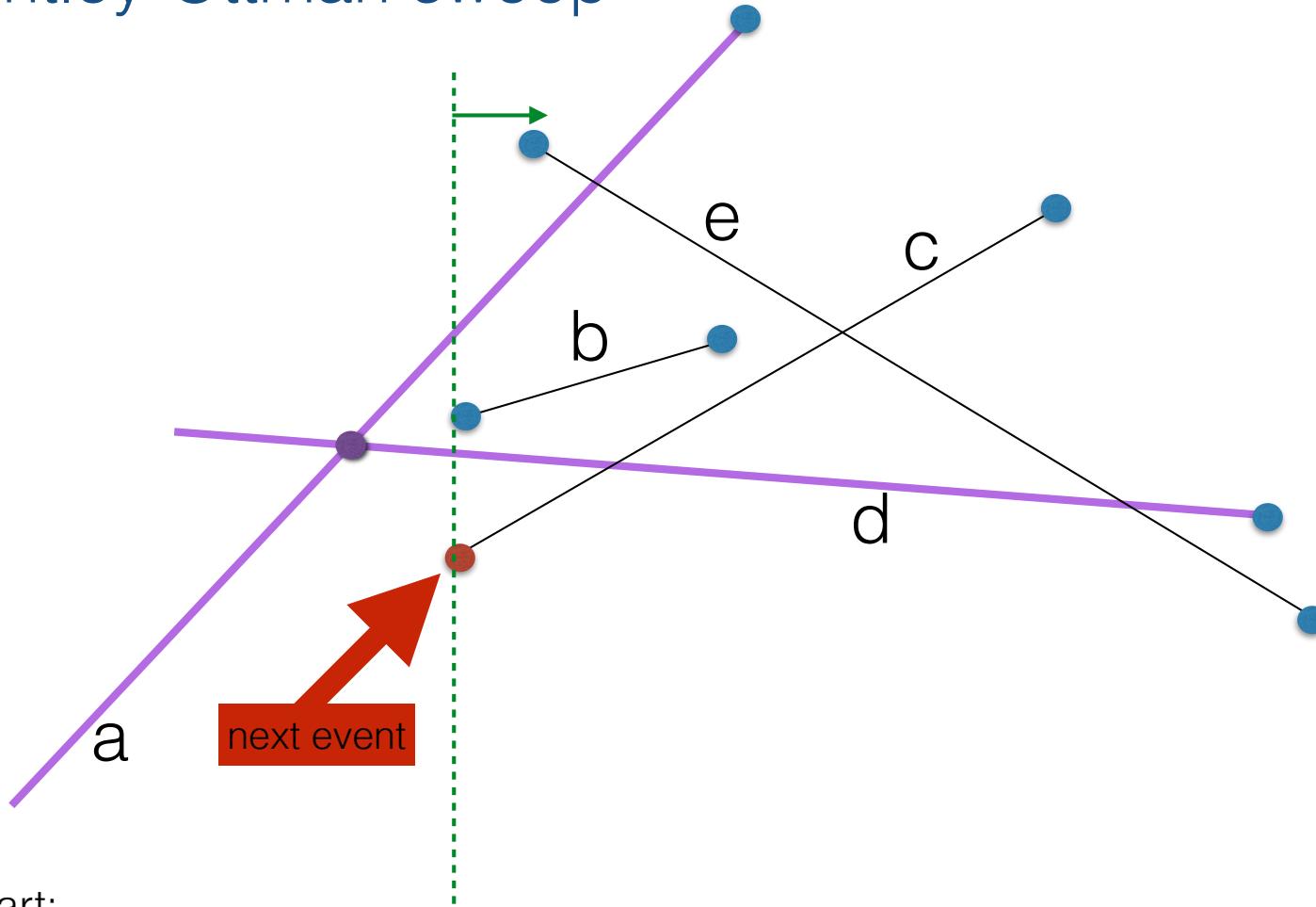
Bentley-Ottman sweep



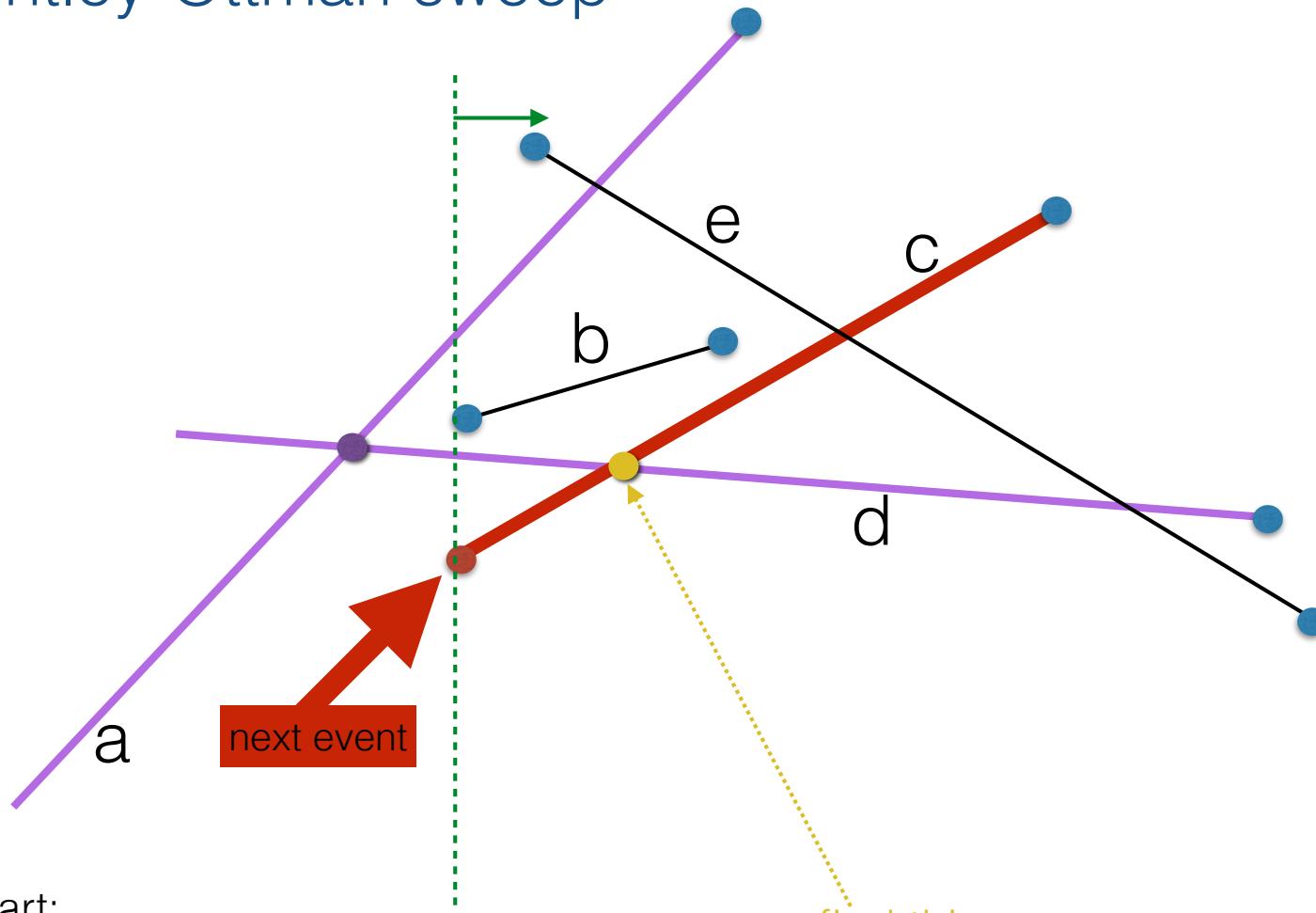
this event is intersection of (a,d):

- flip a and d is AS: a is now above d ($d < a$)

Bentley-Ottman sweep

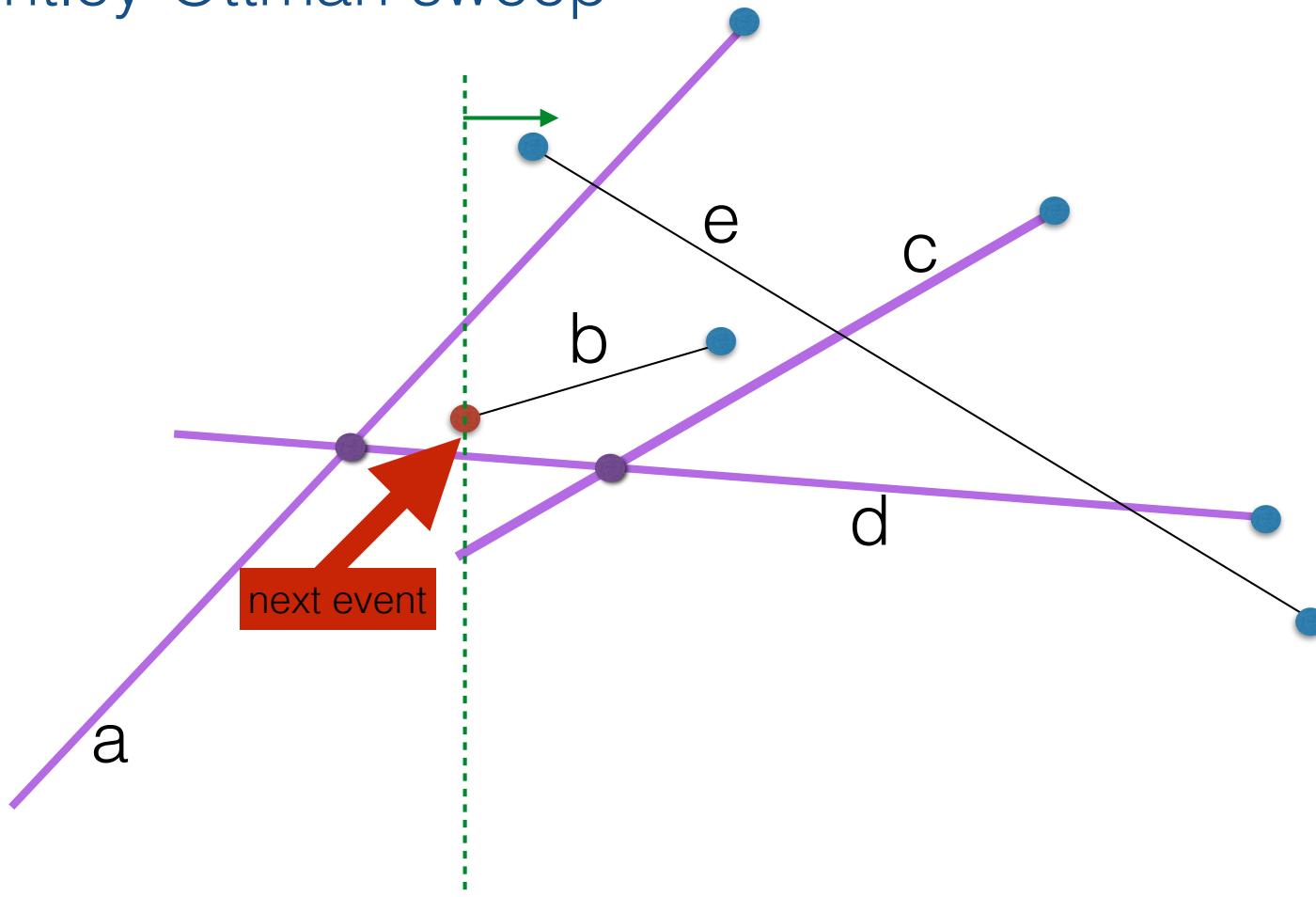


Bentley-Ottman sweep



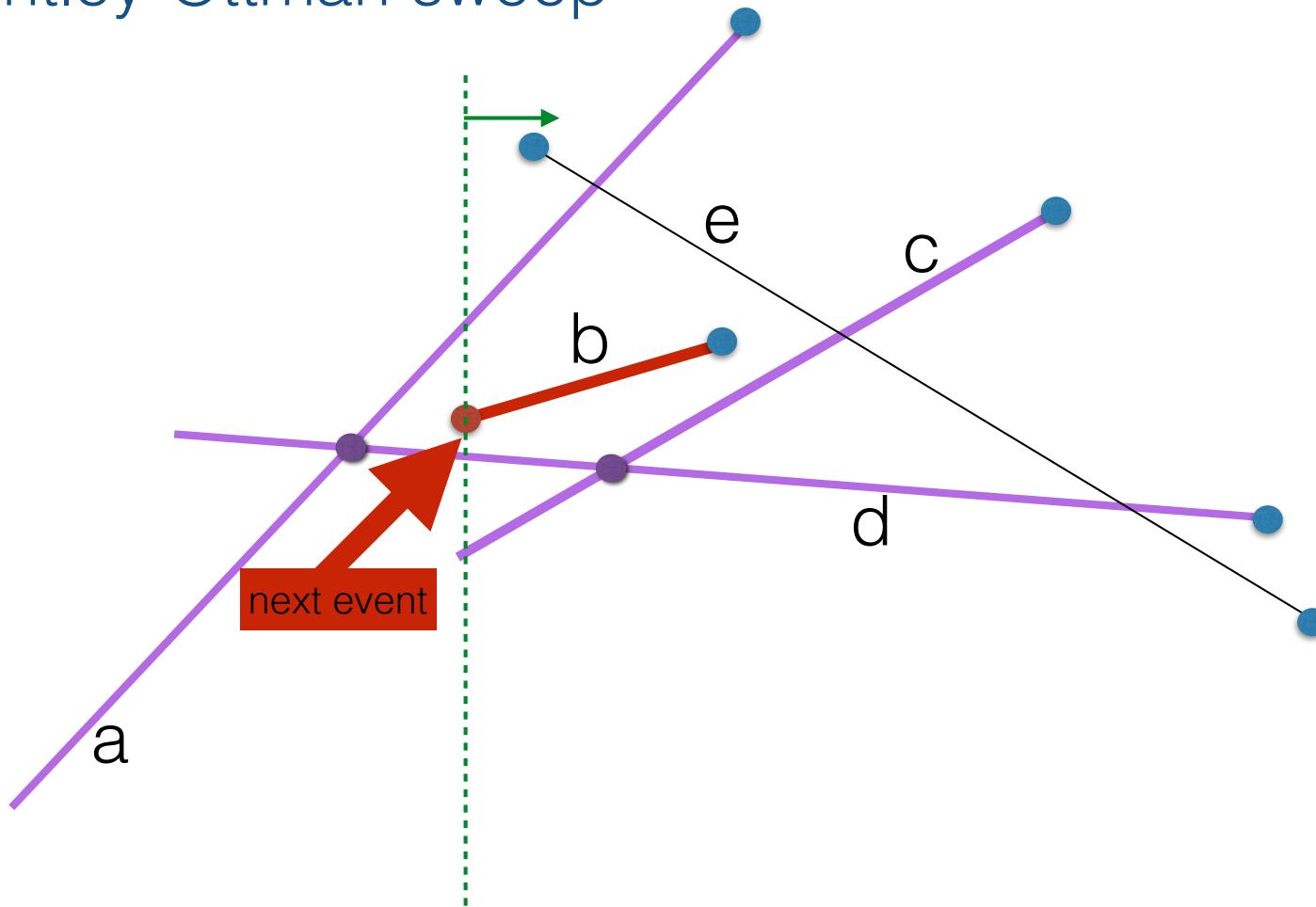
- c.start:
 - insert c in AS: $c < d < a$
 - check c with its above and below neighbors for intersection to the right of the sweep line; this detects the intersection point of c and d; report it and insert it as future event

Bentley-Ottman sweep



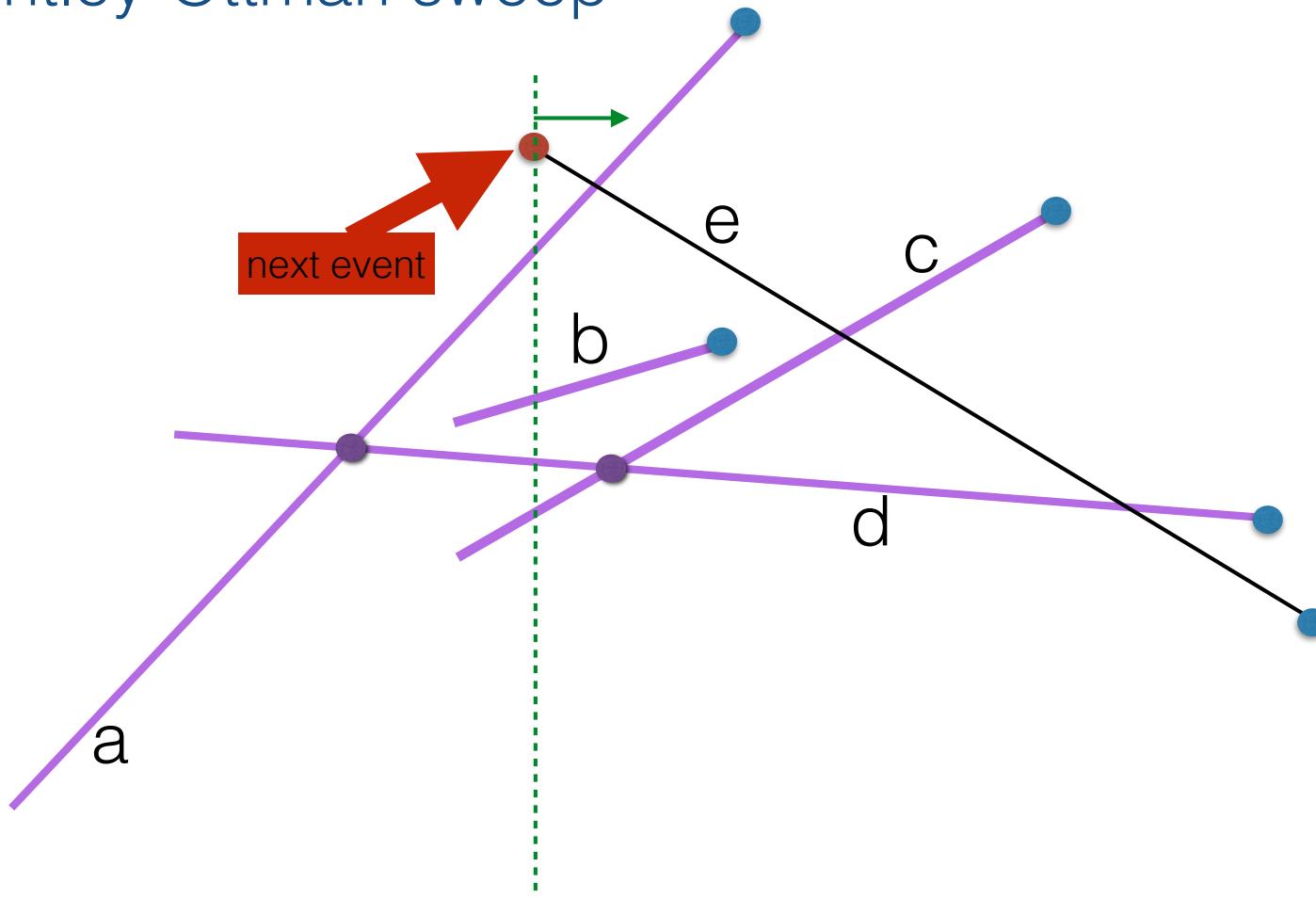
- b.start:

Bentley-Ottman sweep



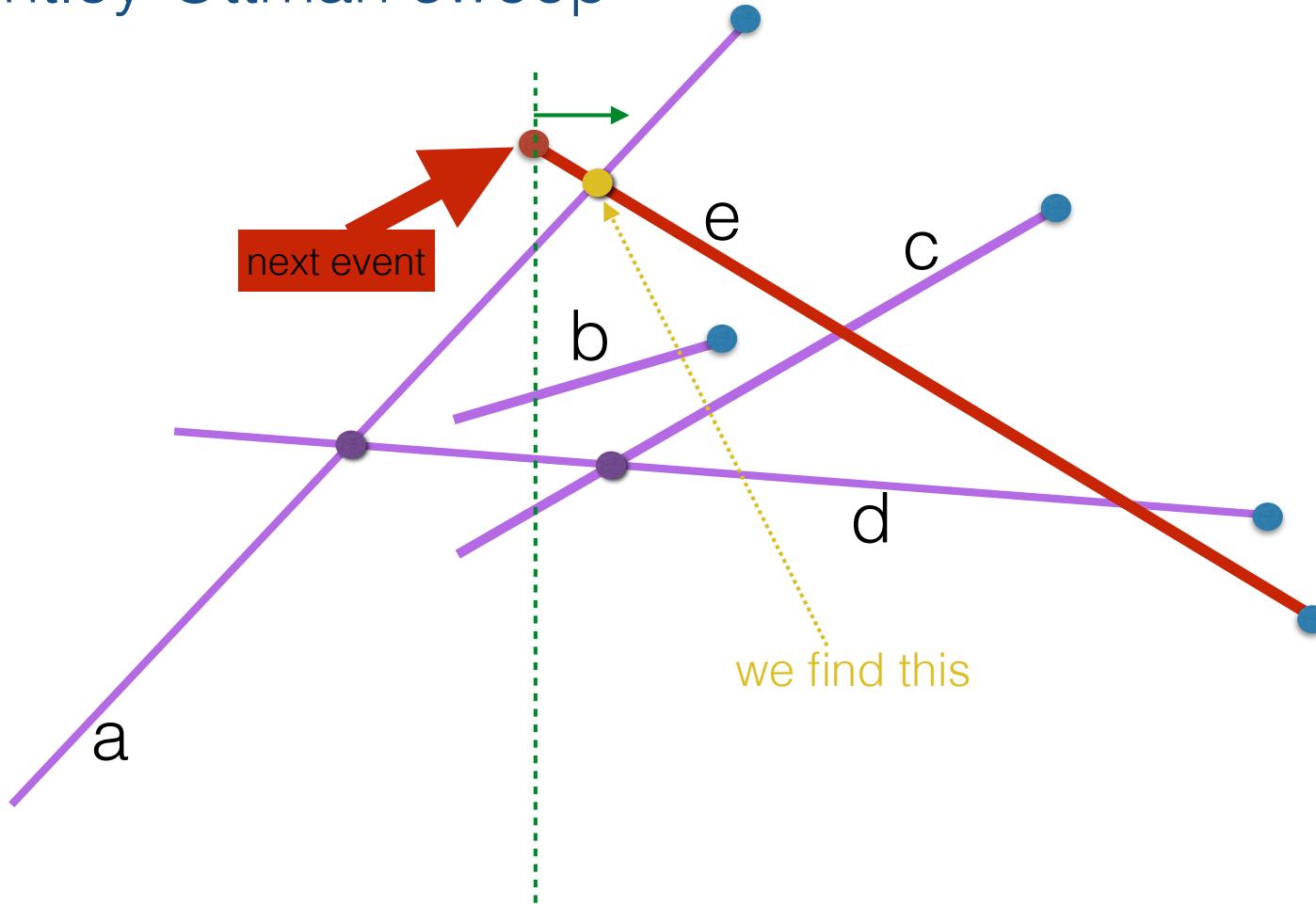
- b.start:
 - insert b in AS; $c < d < \mathbf{b} < a$
 - check b with its above and below neighbors for intersection to the right of the sweep line; (d,b) don't intersect; (b, a) don't intersect

Bentley-Ottman sweep



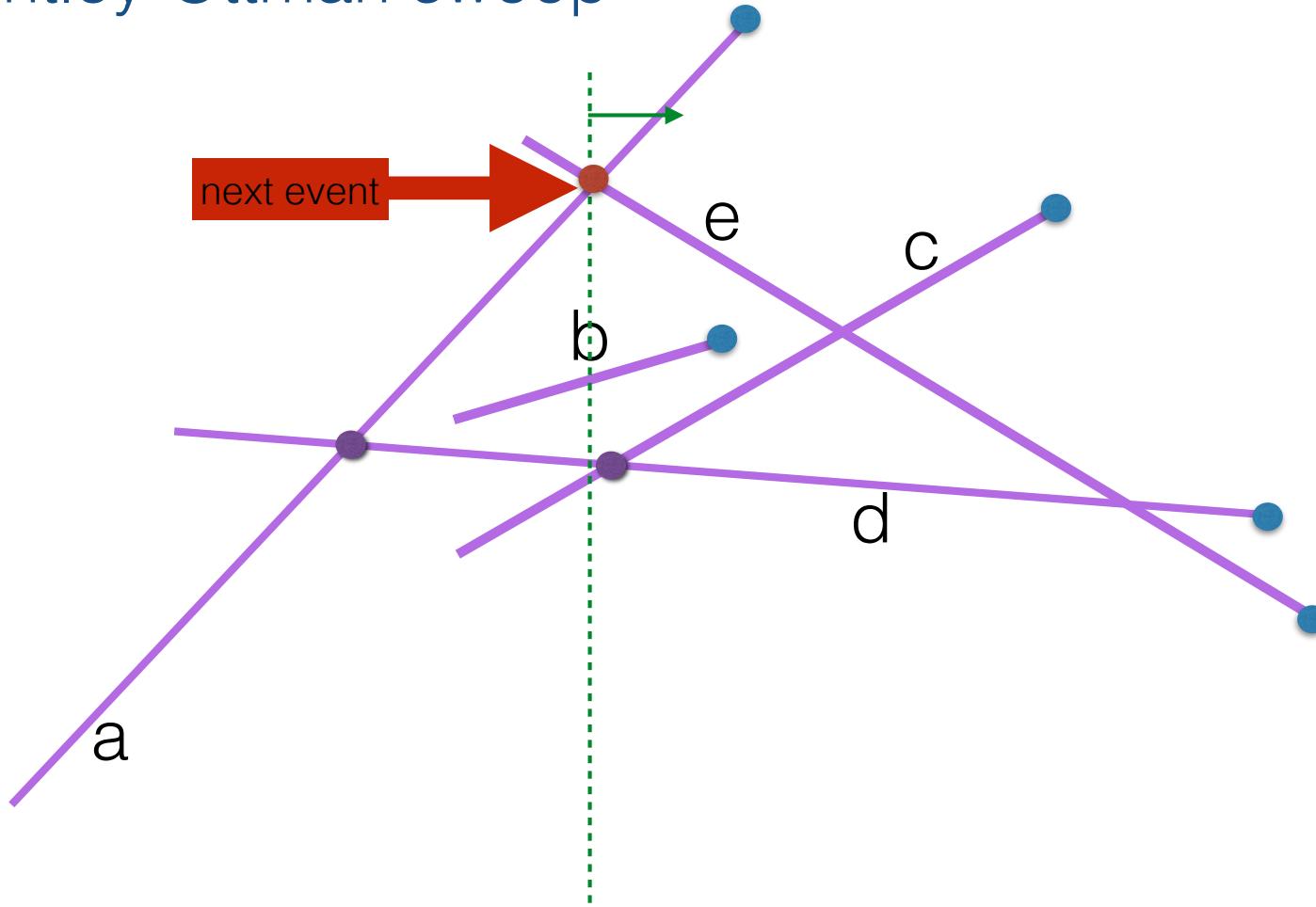
- e.start:

Bentley-Ottman sweep



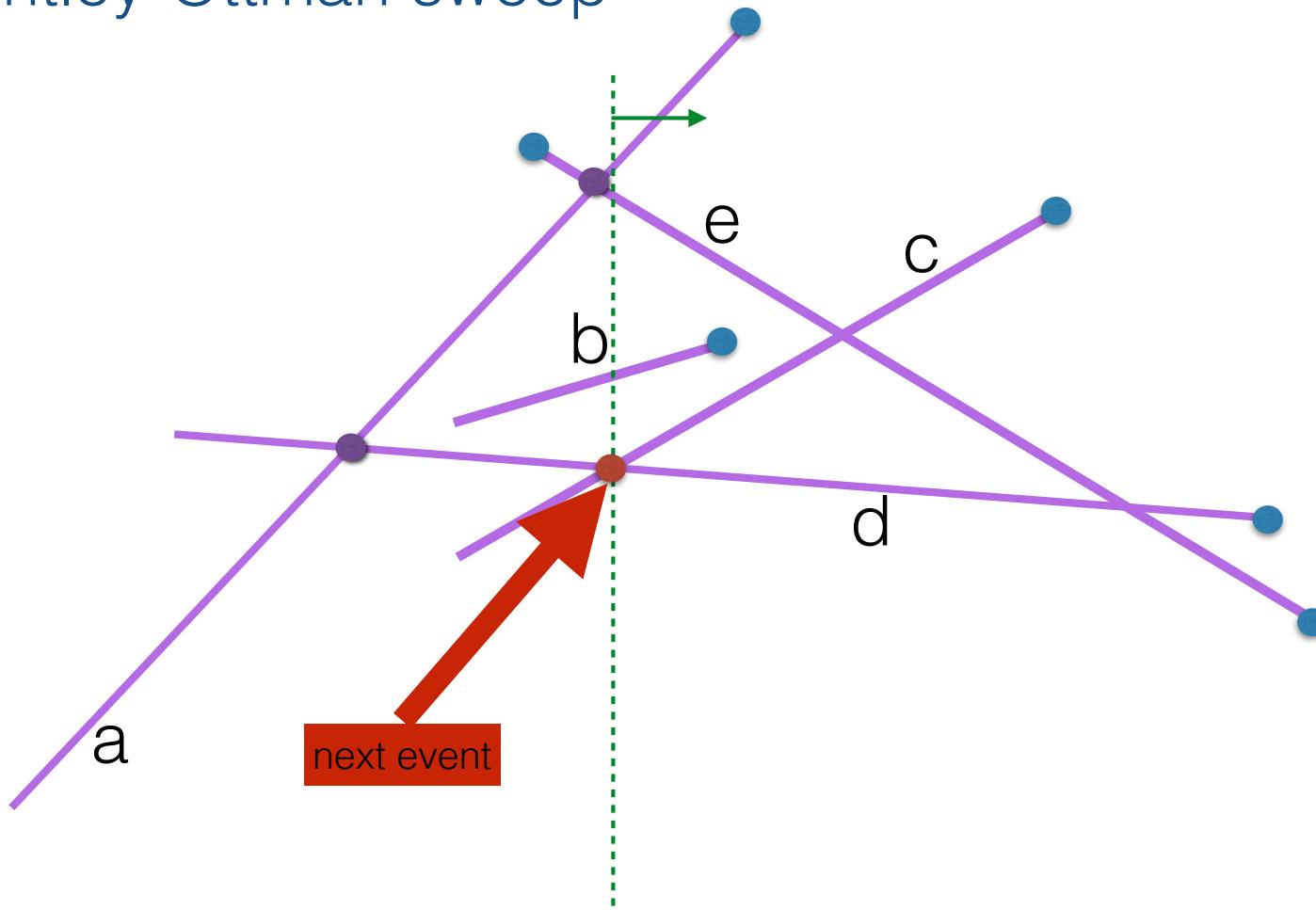
- e.start:
 - insert e in AS: $c < d < b < a < e$
 - check e with its above and below neighbors for intersection to the right of the sweep line; this detects intersection point of (a,e); report it and insert it as future event

Bentley-Ottman sweep



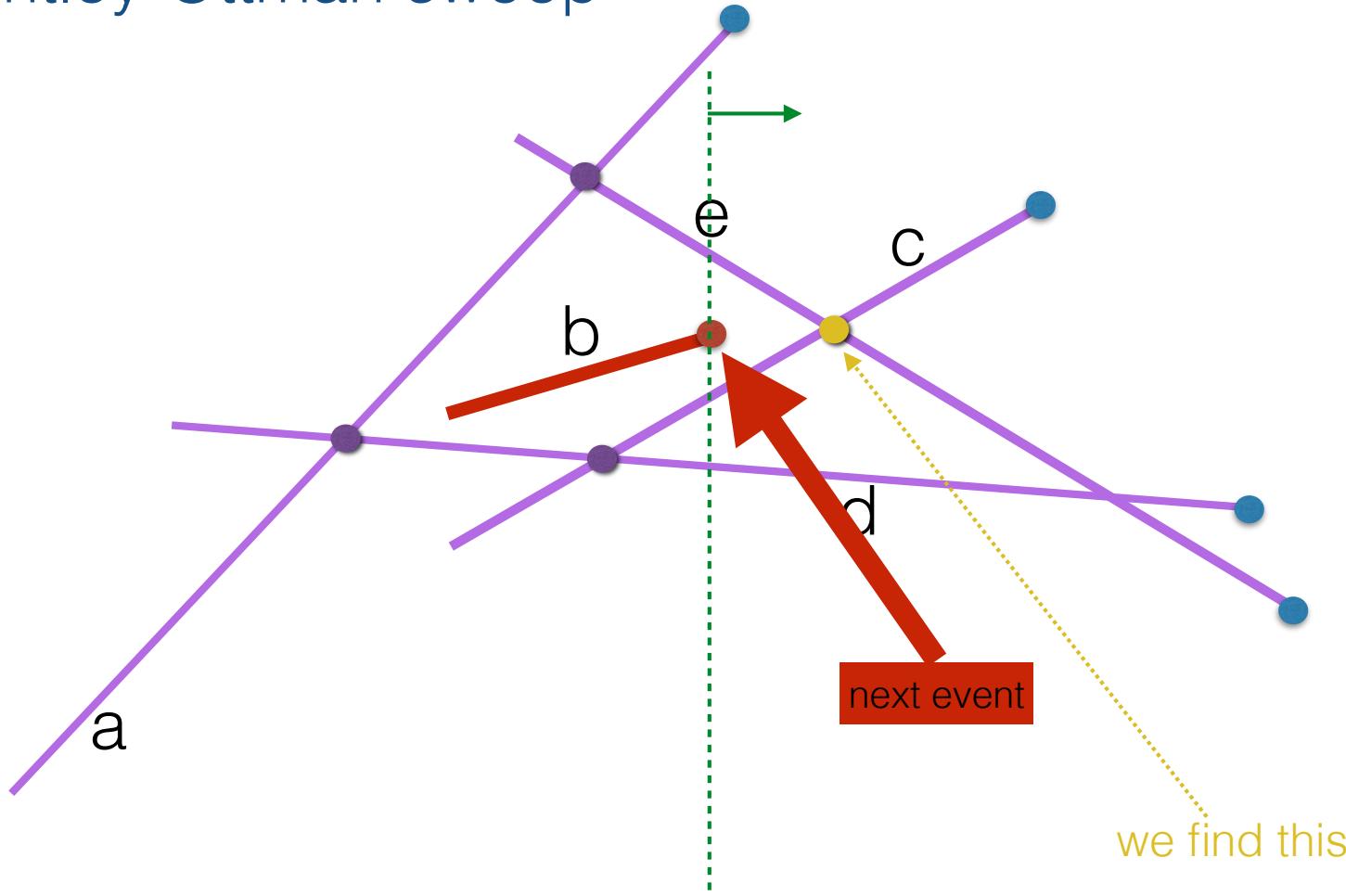
- next event is the intersection of (a,e):
 - flip a and e: $c < d < b < e < a$
 - check new neighbors (e,b) for intersection to the right of the sweep line; (e,b) don't intersect

Bentley-Ottman sweep



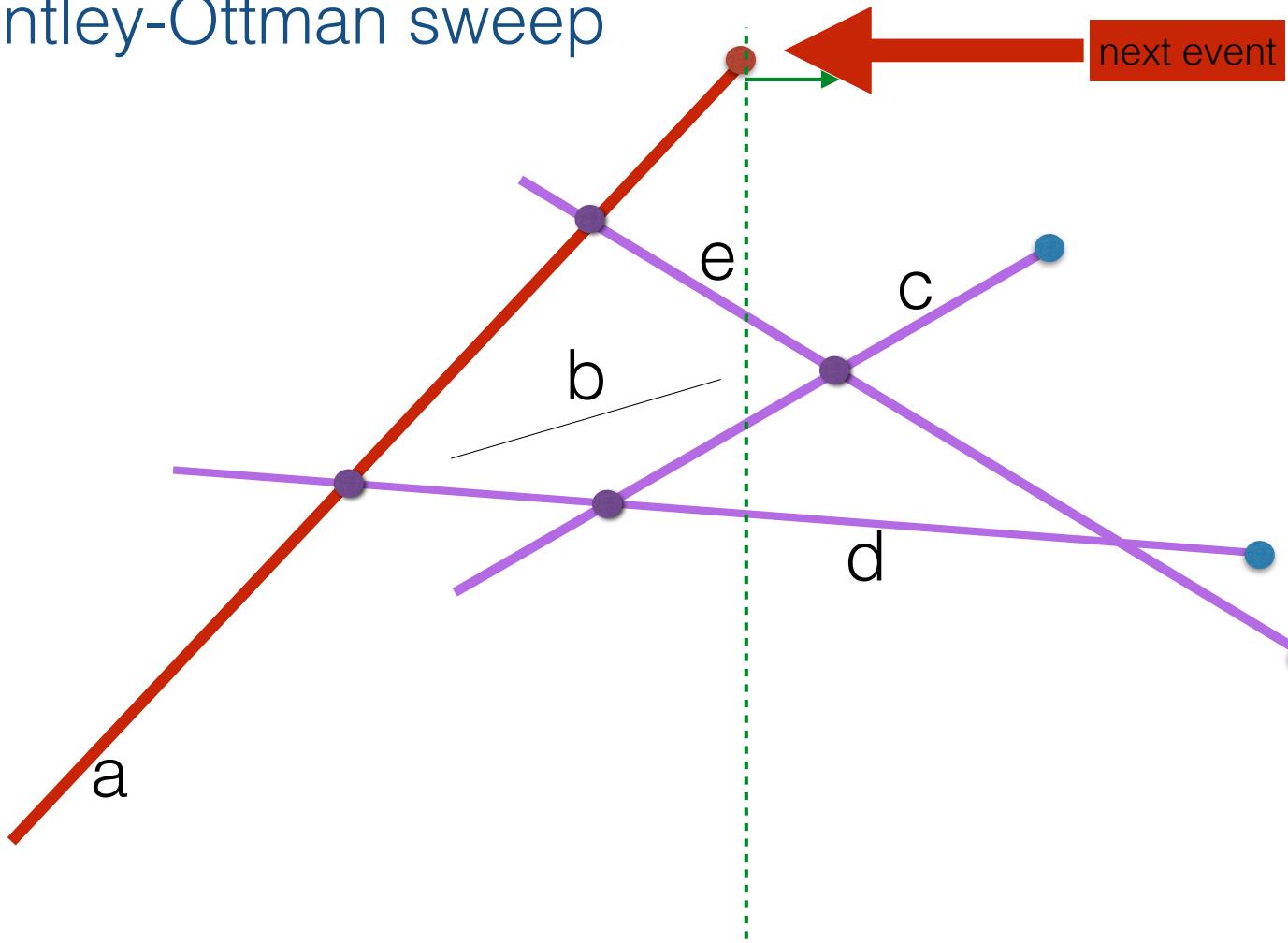
- next event is intersection of (c,d):
 - flip c and d: **d < c** < b < e < a
 - check new neighbors (c,b) for intersection to the right of the sweep line; (c,b) don't intersect

Bentley-Ottman sweep



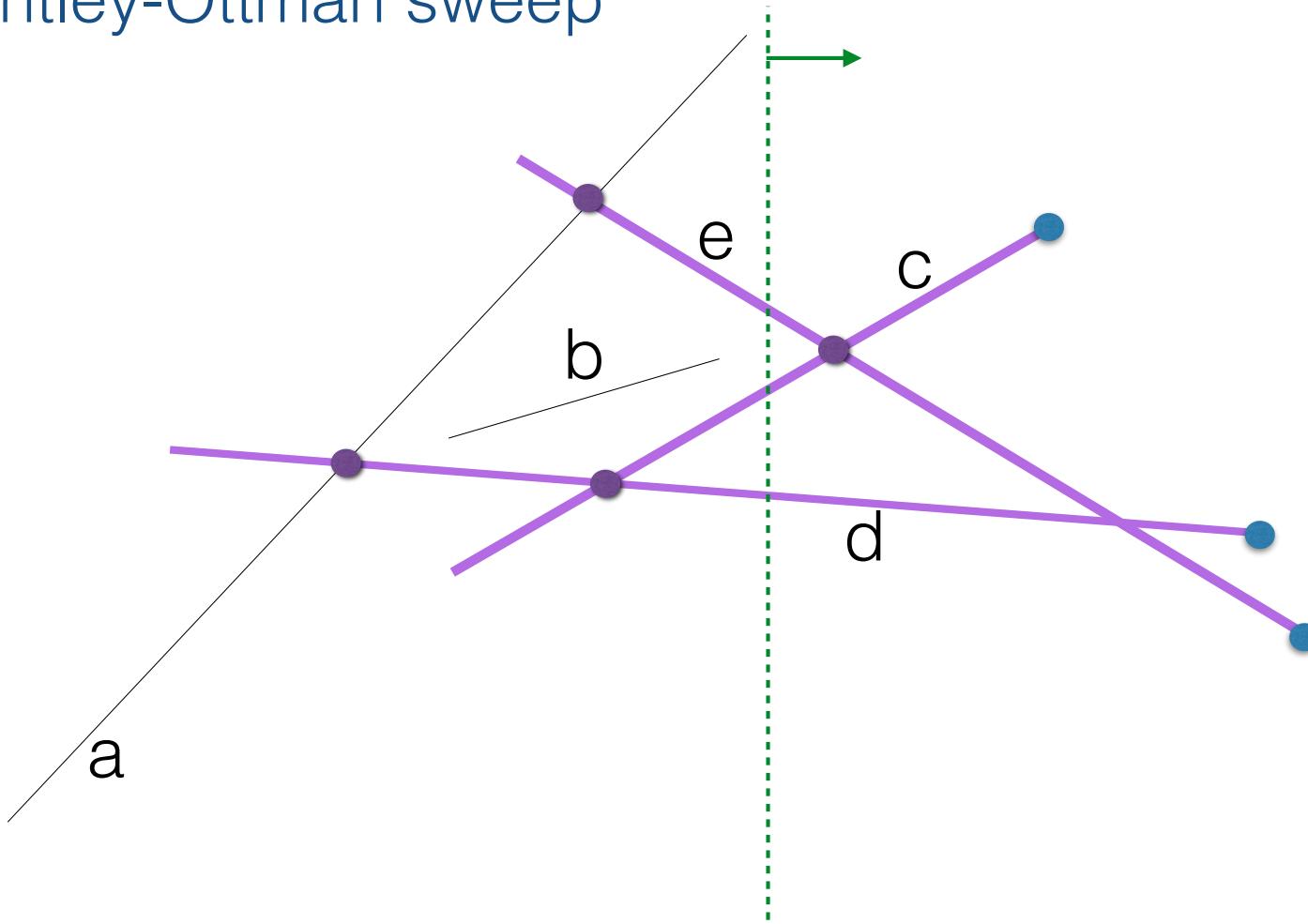
- b.end:
 - delete b from AS: $d < c < b < e < a$
 - check new neighbors (c,e) for intersection to the right of the sweep line; this detects the intersection point of (c,e); report it and insert it as future event

Bentley-Ottman sweep



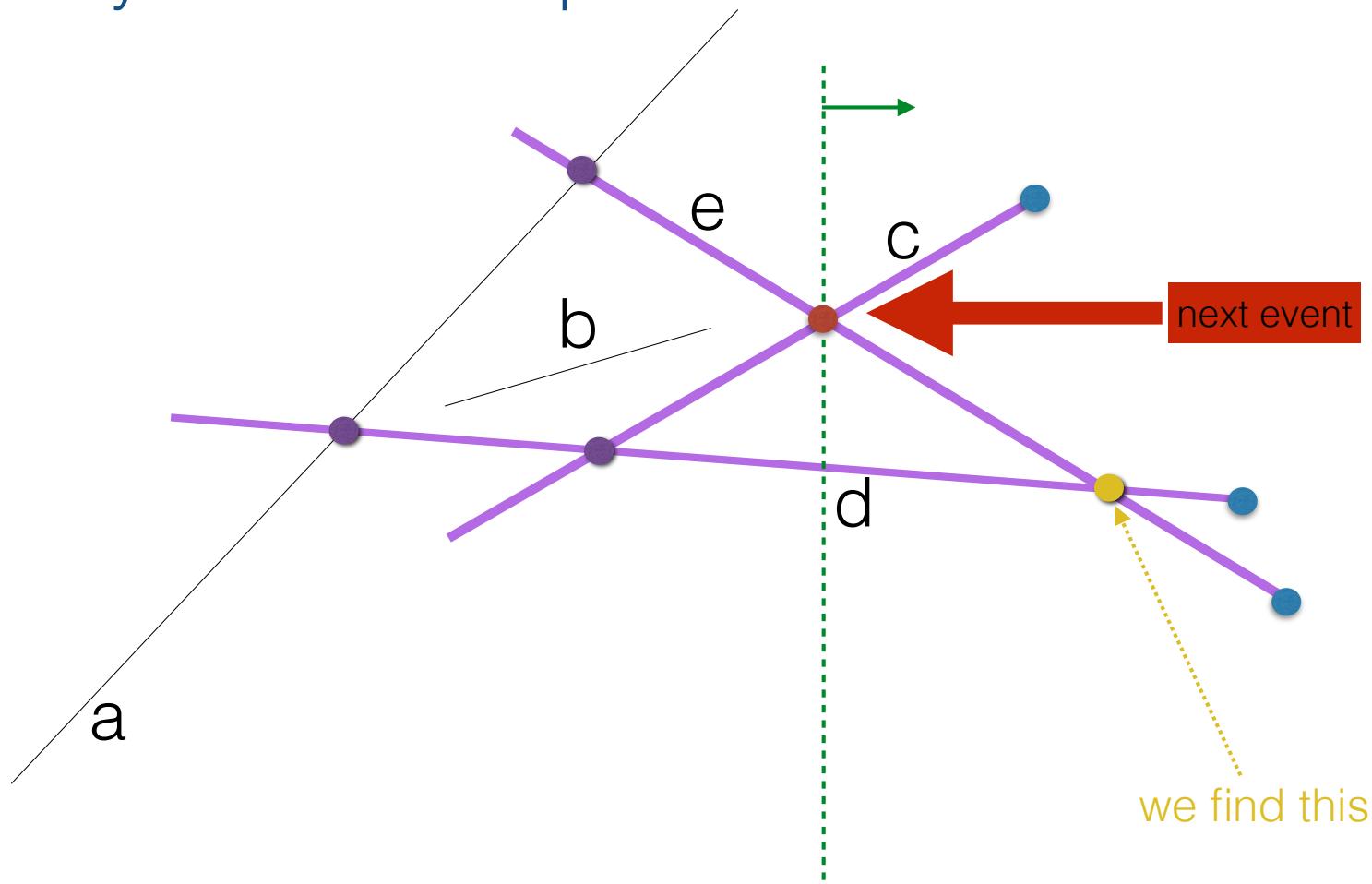
- a.end:
 - delete a from AS: $d < c < e < a$
 - no new neighbors

Bentley-Ottman sweep



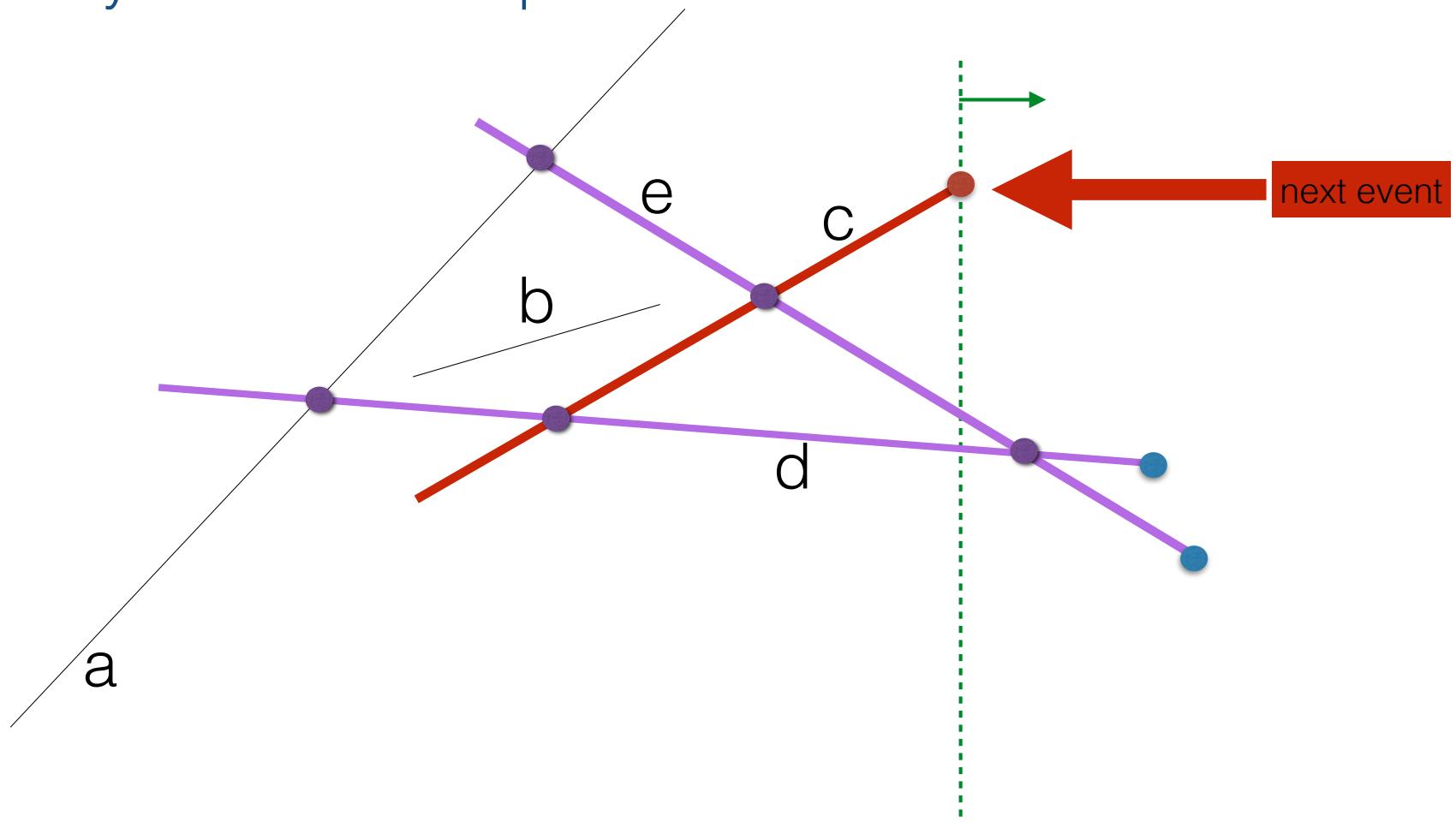
- a.end:
 - delete a from AS: $d < c < e < a$
 - no new neighbors

Bentley-Ottman sweep



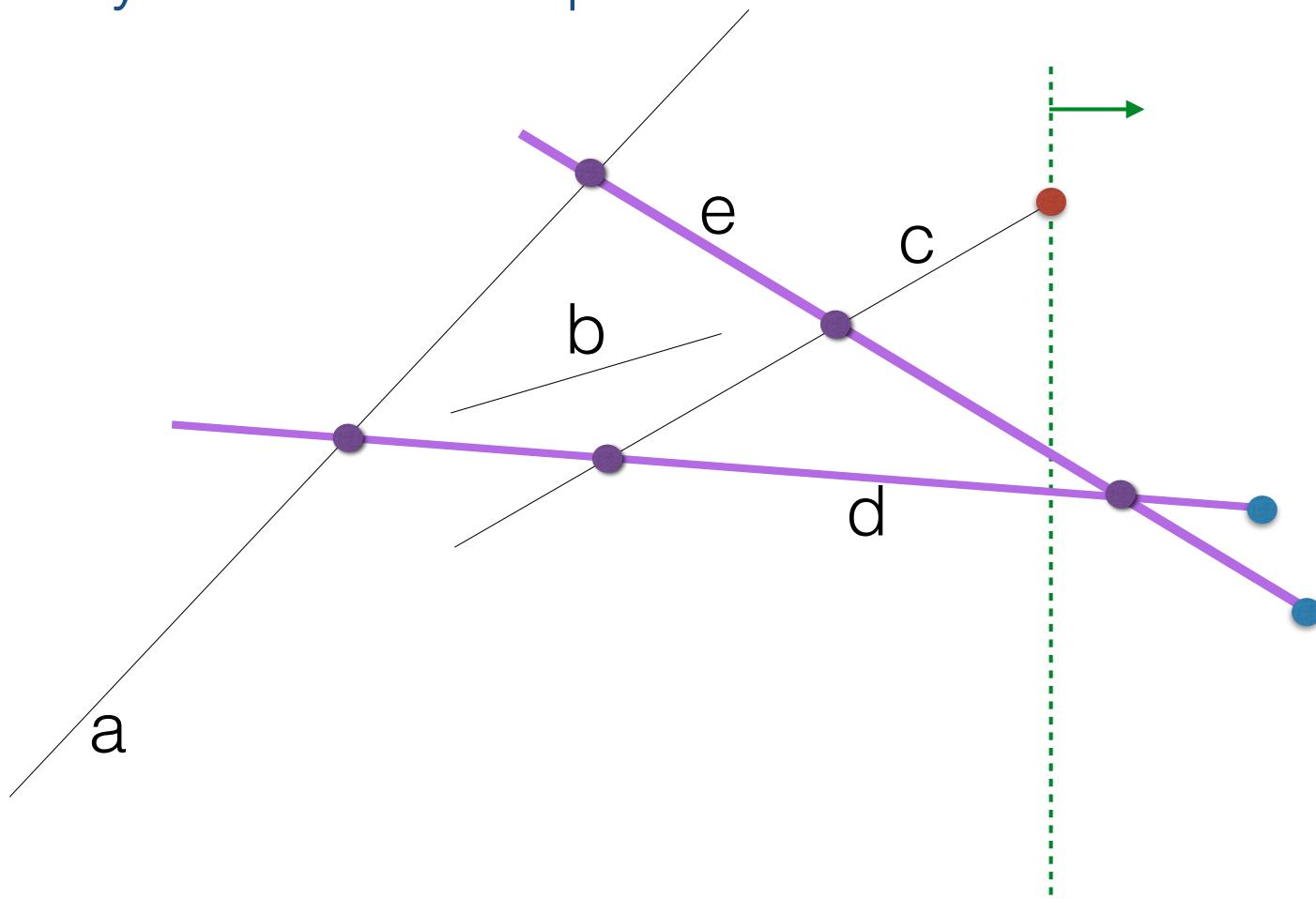
- next event is the intersection of (c,e):
 - flip c,e in AS: $d < e < c$
 - check new neighbors (d,e) for intersection to the right of the sweep line; this detects the intersection of (d,e); report it and insert it as future event

Bentley-Ottman sweep



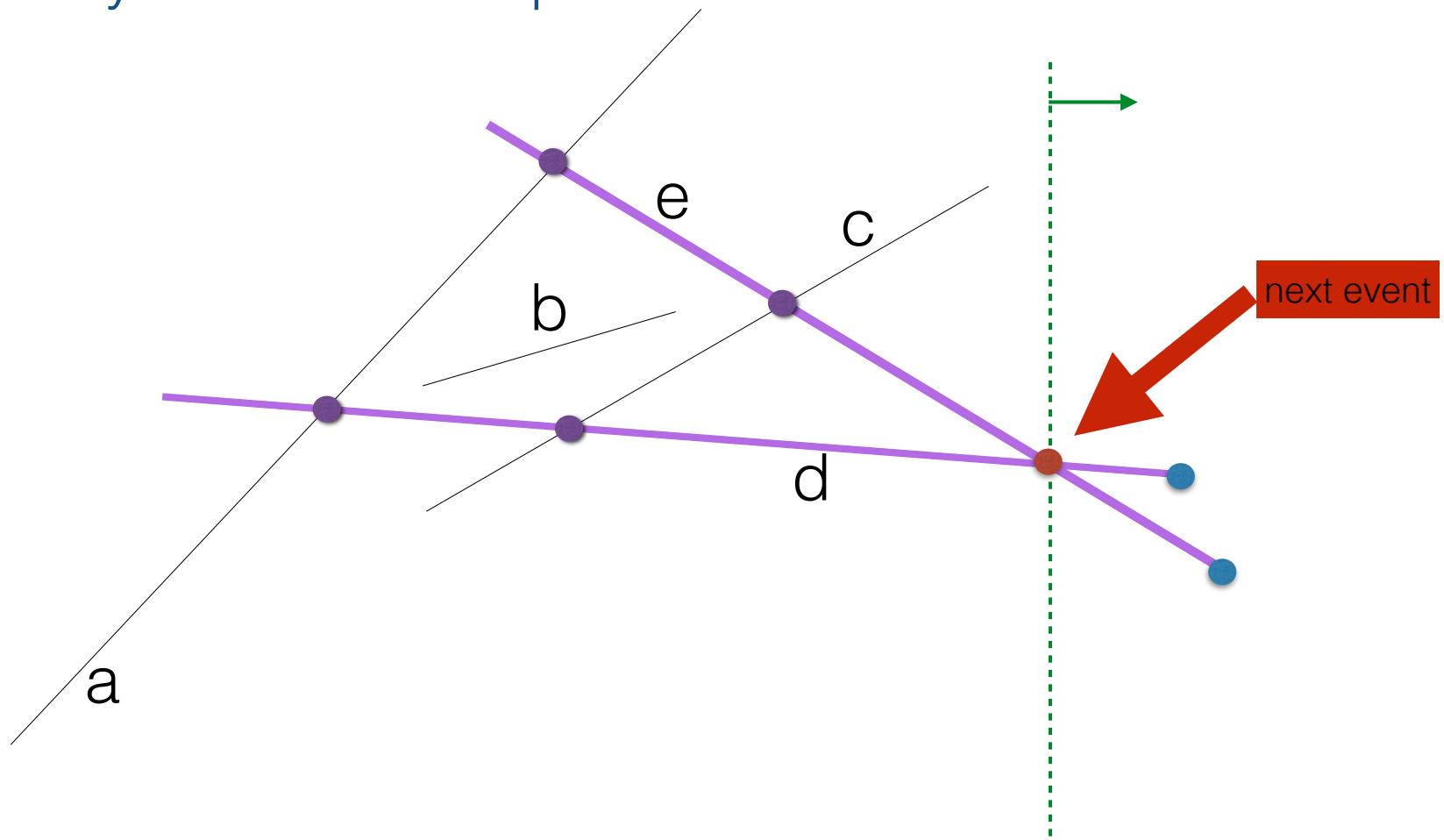
- c.end:
 - delete c in AS: $d < e < c$
 - no new neighbors

Bentley-Ottman sweep



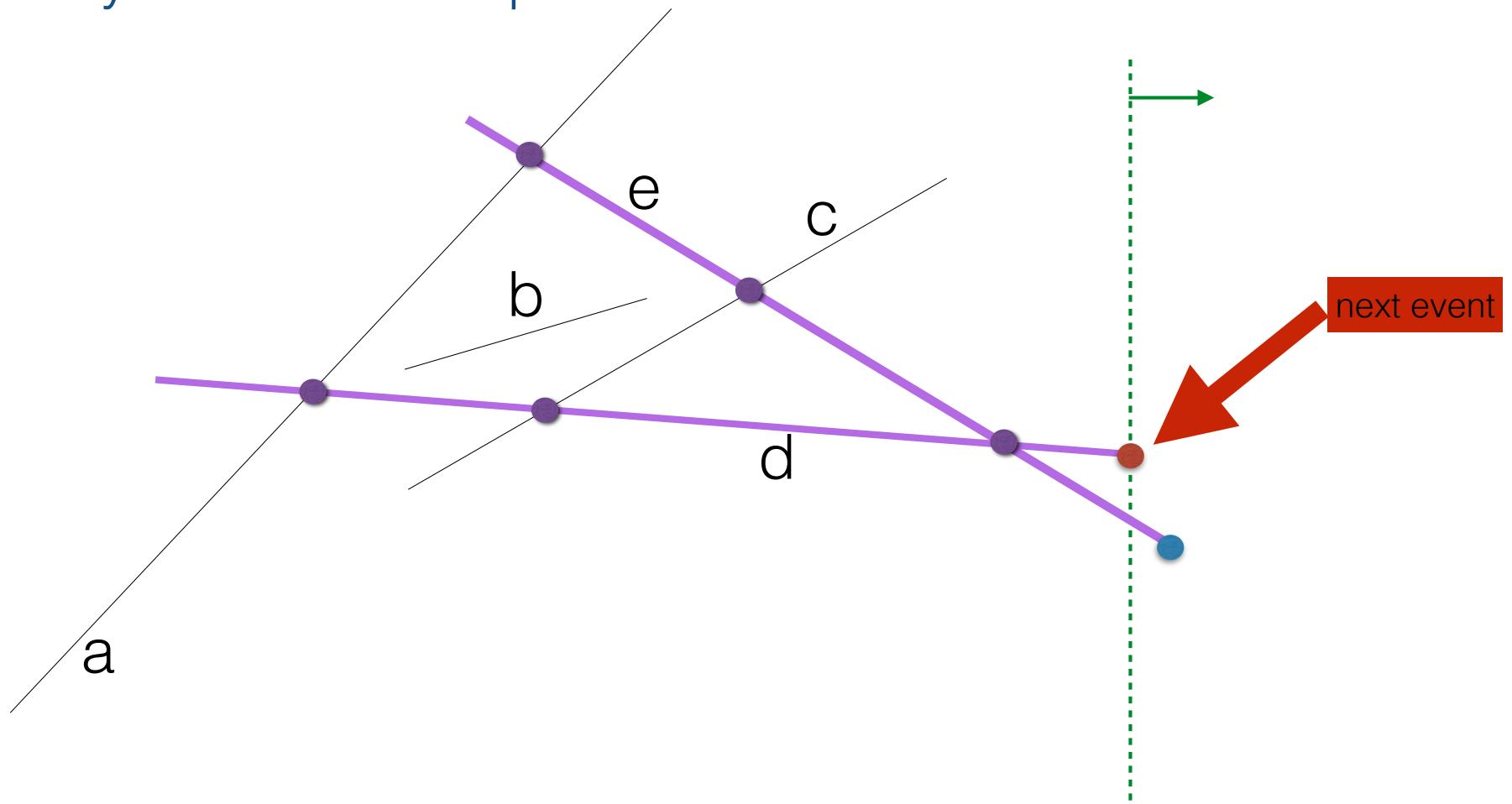
- c.end:
 - delete c in AS: $d < e$
 - no new neighbors

Bentley-Ottman sweep



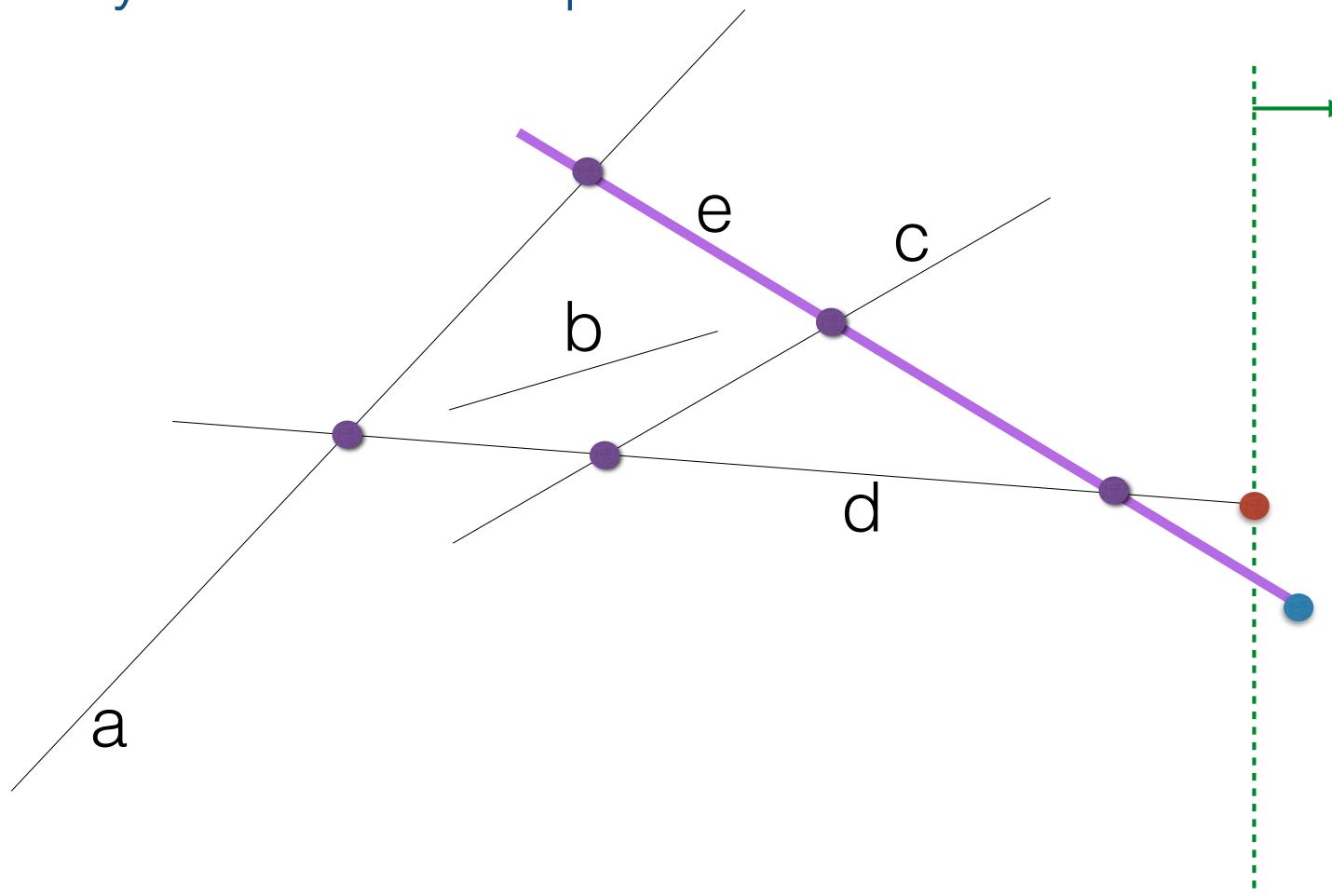
- next event is the intersection of (d,e):
 - flip d,e in AS: **e < d**
 - no new neighbors

Bentley-Ottman sweep



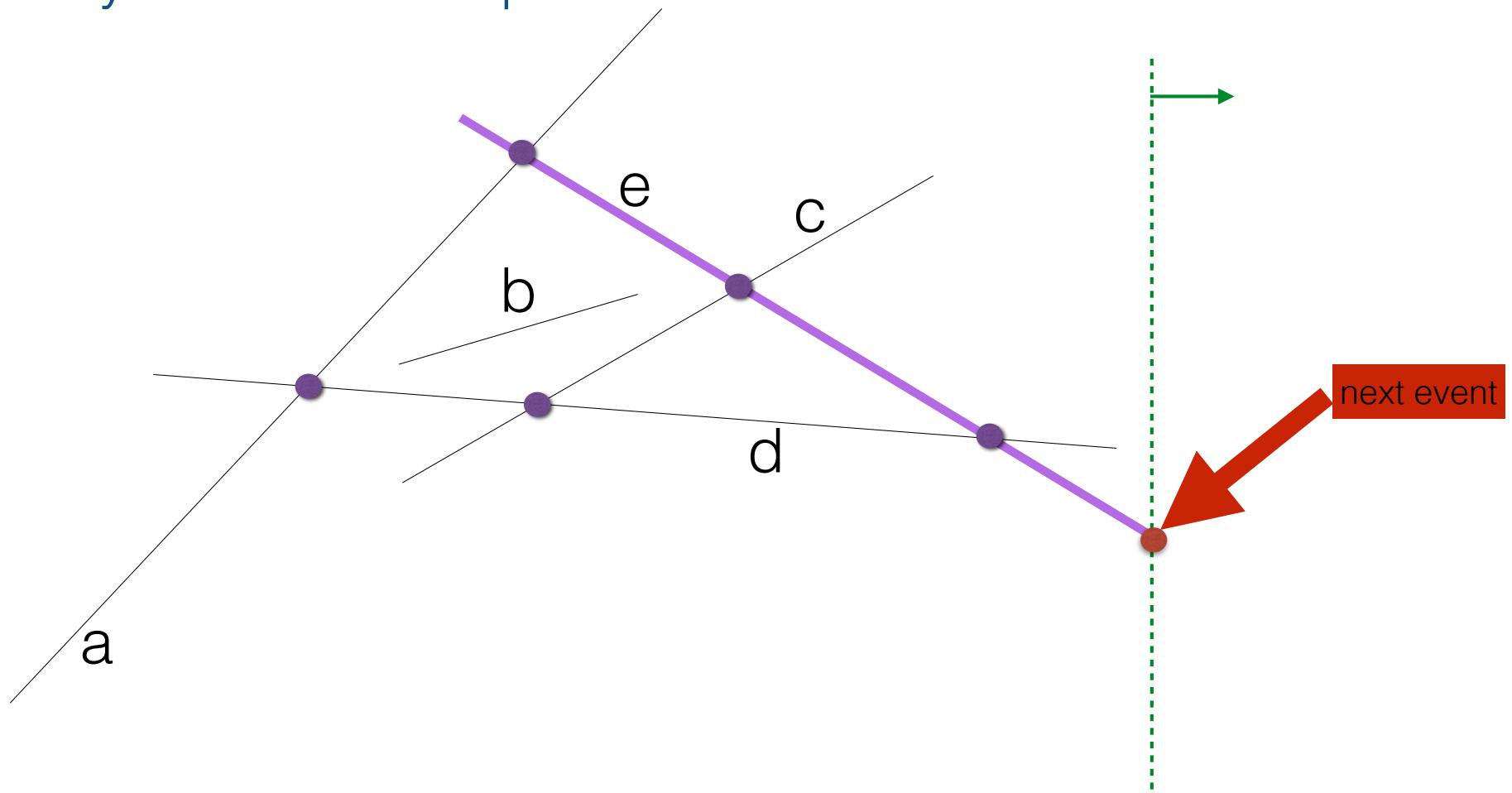
- d.end:
 - delete d in AS: e
 - no new neighbors

Bentley-Ottman sweep



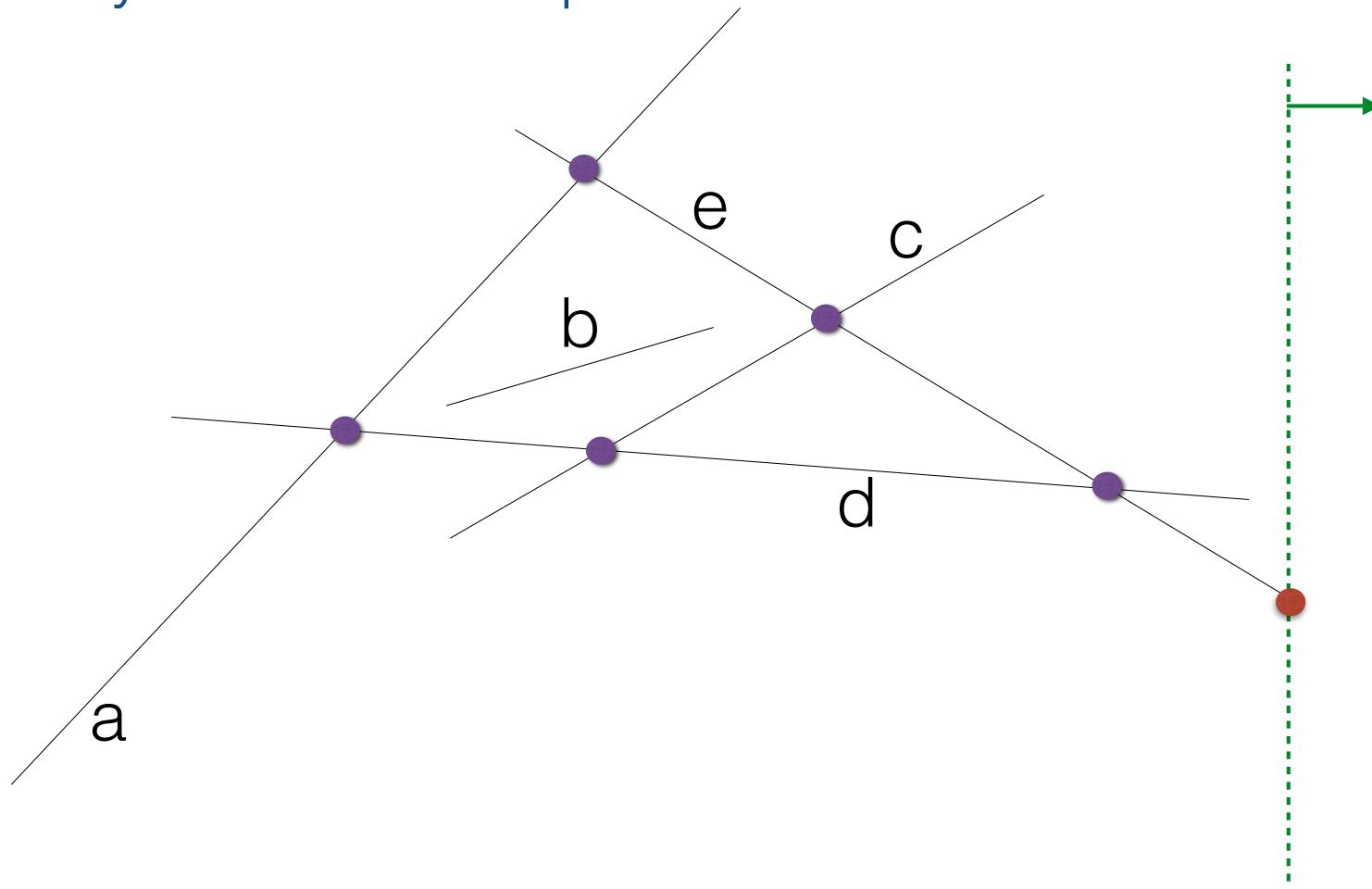
- this event is the end of d:
 - delete d in AS: e
 - no new neighbors

Bentley-Ottman sweep



- e.end:
 - delete e in AS:
 - no new neighbors

Bentley-Ottman sweep



- e.end:
 - delete e in AS:
 - no new neighbors

Bentley-Ottman sweep

SL: sweep line

To implement these ideas, we'll maintain two data structures:

- Active structure AS:
 - For any position of the sweep line SL, AS contains all **active** segments (segments that start before SL and end after SL)
 - AS is sorted by their y-coordinates of their intersection with SL
- Event list:
 - For any position of SL, EventList contains segment endpoints to the right of SL, and also the intersections to the right of SL of active segments that were/are neighbors in SL
 - EventList is sorted by x-coordinate

//Input: S is a set of n line segments in the plane

Algorithm Bentley-Ottman (S)

- initialize AS= {}
- sort $2n$ endpoints of all segments in S by x-coord and store them in EventList
- while EventList not empty:
 - let e be the next event from EventList; delete it from EventList
//sweep line moves to SL.x=e.x
 - if e is left endpoint of a segment l
// segment l becomes active
 - insert l in AS
 - check if l intersects with $l.prev$ and $l.succ$ in AS to the right of the sweep line; if they do, insert their intersection point in the EventList
//optional: since $l.prev$ and $l.succ$ are not neighbors anymore, we check if they intersect and if they do, delete that intersection point from the EventList
 - if e is the right endpoint of a segment l
 - delete l from AS
 - ...
 - if e is the intersection of two segments
 - search for the two segments in AS and flip their order...
 -

Bentley-Ottman sweep

- For simplicity, we made some simplifying assumptions
 - no vertical segments
 - no two segments intersect at their endpoints
 - no three (or more) segments have a common intersection
 - all endpoints (of segments) and all intersection points have different x-coordinates
 - no segments overlap
- These assumptions are not realistic for real data..
- But, they don't provide insight into the plane sweep technique, so we omit them

The details

- Active structure
 - What data structure should we use for AS?
 - What operations do we do on AS?
- EventList
 - Note that we know a priori the $2n$ events corresponding to start and end-points of segments, but the events corresponding to intersection points are generated on the fly
 - What data structure should we use for EL?
 - What operations do we do on EL?

Analysis

Running time

- AS
 - Size: $O(n)$
 - How many operations? $O(n + k)$
 - Overall time? $O((n + k) \cdot \lg n)$
- EventList
 - Size: $O(n + k)$
 - How many operations? $O(n + k)$
 - Overall time? $O((n + k) \cdot \lg n)$

Result: The intersections of a set of n segments in the plane can be found with the Bentley-Ottman sweep algorithm in $O((n + k) \cdot \lg n)$ time.

