
Line segment intersectiona

b
c

d

e

Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Line segment intersection

• Approach: line sweep

• We’ll get an overall bound of

• this improves on the naive when is small

• The algorithm was developed by Jon Bentley and Thomas Ottman in 1979

• Simple (..in retrospect!), elegant and practical

O(n lg n + k lg n)
O(n2) k

• : size of the input (number of segments)

• : size of output (number of intersections)

n

kOverview

Given a set of n line segments in the plane Find all their intersection points

a

b
c

d

e

• Let X be the set of all x-coords of segments

The sweep

a

b
c

d

e

The sweep

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

becomes active:

insert

stops being active:

delete

a

b
c

d

e

• a.start:

• segment a becomes active

• it will stay active until sweep line reaches a.end

The sweep

a

b
c

d

e

• d.start

• segment d becomes active

• it will stay active until sweep line reaches d.end

The sweep

a

b
c

d

e

The sweep

• c.start

• segment c becomes active

• it will stay active until sweep line reaches c.end

a

b
c

d

e

The sweep

• b.start

a

b
c

d

e

At this moment 4 segments are active

How could we have
detected this?

How do we detect intersections during the sweep?

orthogonal segments

horizontal segments in y-order

a

d

a below d a above d

general segments

above-below order flips at intersection point!

Key idea #1

Key idea #2

x1

a

b

d

e

f

g

x2 x3

• Write the segments in above-below order at x1, x2 and x3

Key idea #2

• Segments that intersect are consecutive in above-below order just before they intersect

There exists an event after which a, b
become consecutive in above-below order

a

b

• Strategy: Throughout the sweep, we’ll check for intersection all pairs of segments that are
consecutive in above-below order. This way we cannot miss any intersection!

Let’s start over..

Bentley-Ottman sweep

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Initialize active structure: AS = {}

• Traverse events in order

Bentley-Ottman sweep

a

b
c

d

e

a.start:

• insert a in AS: a

Bentley-Ottman sweep

a

b
c

d

e

d.start:

Bentley-Ottman sweep

a

b
c

d

e

d.start:

• insert d in AS: a < d

• a,d consecutive: check if (a,d) intersect to the right of the line; they do;

report point and insert it in the list of future events

we find this

Bentley-Ottman sweep

a

b
c

d

enext event

this event is intersection of (a,d):

• flip a and d is AS: a is now above d (d < a)

Bentley-Ottman sweep

a

b
c

d

e

next event

• c.start:

Bentley-Ottman sweep

a

b
c

d

e

• c.start:

• insert c in AS: c < d < a

• check c with its above and below neighbors for intersection to the right of the

sweep line; this detects the intersection point of c and d; report it and insert it as
future event

next event

we find this

Bentley-Ottman sweep

a

b
c

d

e

• b.start:

next event

Bentley-Ottman sweep

a

b
c

d

e

• b.start:

• insert b in AS; c < d < b < a

• check b with its above and below neighbors for intersection to the right of the

sweep line; (d,b) don’t intersect; (b, a) don’t intersect

next event

Bentley-Ottman sweep

a

b
c

d

e

• e.start:

next event

Bentley-Ottman sweep

a

b
c

d

e

• e.start:

• insert e in AS: c < d < b < a < e

• check e with its above and below neighbors for intersection to the right of the

sweep line; this detects intersection point of (a,e); report it and insert it as future
event

next event

we find this

Bentley-Ottman sweep

a

b
c

d

e

• next event is the intersection of (a,e):

• flip a and e: c < d < b < e < a

• check new neighbors (e,b) for intersection to the right of the sweep line; (e,b)

don’t intersect

next event

Bentley-Ottman sweep

a

b
c

d

e

• next event is intersection of (c,d):

• flip c and d: d < c < b < e < a

• check new neighbors (c,b) for intersection to the right of the sweep line; (c,b)

don’t intersect

next event

Bentley-Ottman sweep

a

b
c

d

e

• b.end:

• delete b from AS: d < c < b < e < a

• check new neighbors (c,e) for intersection to the right of the sweep line; this

detects the intersection point of (c,e); report it and insert it as future event

next event

we find this

Bentley-Ottman sweep

a

b
c

d

e

• a.end:

• delete a from AS: d < c < e < a

• no new neighbors

next event

Bentley-Ottman sweep

a

b
c

d

e

• a.end:

• delete a from AS: d < c < e < a

• no new neighbors

Bentley-Ottman sweep

a

b
c

d

e

• next event is the intersection of (c,e):

• flip c,e in AS: d < e < c

• check new neighbors (d,e) for intersection to the right of the sweep line; this

detects the intersection of (d,e); report it and insert it as future event

next event

we find this

Bentley-Ottman sweep

a

b
c

d

e

• c.end:

• delete c in AS: d < e < c

• no new neighbors

next event

Bentley-Ottman sweep

a

b
c

d

e

• c.end:

• delete c in AS: d < e

• no new neighbors

Bentley-Ottman sweep

a

b
c

d

e

• next event is the intersection of (d,e):

• flip d,e in AS: e < d

• no new neighbors

next event

Bentley-Ottman sweep

a

b
c

d

e

• d.end:

• delete d in AS: e

• no new neighbors

next event

Bentley-Ottman sweep

a

b
c

d

e

• this event is the end of d:

• delete d in AS: e

• no new neighbors

Bentley-Ottman sweep

a

b
c

d

e

• e.end:

• delete e in AS:

• no new neighbors

next event

Bentley-Ottman sweep

a

b
c

d

e

• e.end:

• delete e in AS:

• no new neighbors

To implement these ideas, we’ll maintain two data structures:

• Active structure AS:

• For any position of the sweep line SL, AS contains all active segments (segments that
start before SL and end after SL)

• AS is sorted by their y-coordinates of their intersection with SL

• Event list:

• For any position of SL, EventList contains segment endpoints to the right of SL, and also
the intersections to the right of SL of active segments that were/are neighbors in SL

• EventList is sorted by x-coordinate

Bentley-Ottman sweep

SL: sweep line

//Input: S is a set of n line segments in the plane

Algorithm Bentley-Ottman (S)

• initialize AS= {}

• sort 2n endpoints of all segments in S by x-coord and store them in EventList

• while EventList not empty:

• let e be the next event from EventList; delete it from EventList

//sweep line moves to SL.x=e.x

• if e is left endpoint of a segment

// segment becomes active

• insert in AS

• check if intersects with and in AS to the right of the sweep line; if they do,

insert their intersection point in the EventList

//optional: since and are not neighbors anymore, we check if they intersect and
if they do, delete that intersection point from the EventList

• if e is the right endpoint of a segment

• delete from AS

• …

• if e is the intersection of two segments

• search for the two segments in AS and flip their order…

• ….

l
l

l
l l . prev l . succ

l . prev l . succ

l
l

• For simplicity, we made some simplifying assumptions

• no vertical segments

• no two segments intersect at their endpoints

• no three (or more) segments have a common intersection

• all endpoints (of segments) and all intersection points have different x-

coordinates

• no segments overlap

• These assumptions are not realistic for real data..

• But, they don’t provide insight into the plane sweep technique, so we omit them

Bentley-Ottman sweep

• Active structure

• What data structure should we use for AS?

• What operations do we do on AS?

• EventList

• Note that we know a priori the 2n events corresponding to start and end-

points of segments, but the events corresponding to intersection points
are generated on the fly

• What data structure should we use for EL?

• What operations do we do on EL?

The details

Running time

• AS

• Size:

• How many operations?

• Overall time?

• EventList

• Size:

• How many operations?

• Overall time?

O(n)
O(n + k)

O((n + k) ⋅ lg n)

O(n + k)
O(n + k)

O((n + k) ⋅ lg n)

Analysis

Result: The intersections of a set of segments in the plane can be found with
the Bentley-Ottman sweep algorithm in time.

n
O((n + k) ⋅ lg n)

