Line segment Intersection

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Line segment intersection

Given a set of n line segments in the plane Find all their intersection points

\ o

e n: size of the input (number of segments)

« k: size of output (number of intersections)

Overview
* Approach: line sweep

« We’'ll get an overall bound of O(nlgn + klgn)
. this improves on the naive O(n?) when k is small
* The algorithm was developed by Jon Bentley and Thomas Ottman in 1979

« Simple (..in retrospect!), elegant and practical

The sweep

* Let X be the set of all x-coords of segments

The sweep

* Let X be the set of all x-coords of segments

 Traverse the events in X in order

becomes active: stops being active:
insert delete

The sweep

e a.start:
e segment a becomes active

it will stay active until sweep line reaches a.end

The sweep

e d.start
* segment d becomes active

it will stay active until sweep line reaches d.end

The sweep

e C.start
e segment c becomes active

it will stay active until sweep line reaches c.end

The sweep

e p.start

How do we detect intersections during the sweep?

At this moment 4 segments are active

How could we have
detected this?

Key idea #1

orthogonal segments general segments

d

a below d 5 a above d

horizontal segments in y-order above-below order flips at intersection point!

Key idea #2

» Write the segments in above-below order at x1, x2 and x3

Key idea #2

« Segments that intersect are consecutive in above-below order just before they intersect

There exists an event after which a, b
become consecutive in above-below order

« Strategy: Throughout the sweep, we’ll check for intersection all pairs of segments that are
consecutive in above-below order. This way we cannot miss any intersection!

| et’s start over..

Bentley-Ottman sweep

—

* Let X be the set of all x-coords of segments
 Initialize active structure: AS = {}

e Traverse events in order

Bentley-Ottman sweep

—

a.start:
e insertain AS: a

Bentley-Ottman sweep

d.start:

Bentley-Ottman sweep

d.start:
e insertdin AS: a<d
e a,d consecutive: check if (a,d) intersect to the right of the line; they do;
report point and insert it in the list of future events

Bentley-Ottman sweep

this event is intersection of (a,d):

« flipaanddis AS: ais now above d (d < a)

Bentley-Ottman sweep

e c.start:

Bentley-Ottman sweep

e C.start:
e insertcinAS:c<dx< a

» check ¢ with its above and below neighbors for intersection to the right of the
sweep line; this detects the intersection point of ¢ and d; report it and insert it as

future event

Bentley-Ottman sweep

e Dp.start:

Bentley-Ottman sweep

e Dp.start:
e insertbinAS;c<d<bx<a

» check b with its above and below neighbors for intersection to the right of the
sweep line; (d,b) dont intersect; (b, a) don't intersect

Bentley-Ottman sweep

* e.start:

Bentley-Ottman sweep

e e.start:
e inserteinAS:c<d<b<ax<e

» check e with its above and below neighbors for intersection to the right of the
sweep line; this detects intersection point of (a,e); report it and insert it as future
event

Bentley-Ottman sweep

* next event is the intersection of (a,e):
 fipaande:c<d<b<ex<a

» check new neighbors (e,b) for intersection to the right of the sweep line; (e,b)
don'’t intersect

Bentley-Ottman sweep

* next event is intersection of (c,d):
« fipcandd:d<c<b<ex<a

« check new neighbors (c,b) for intersection to the right of the sweep line; (c,b)
don'’t intersect

Bentley-Ottman sweep

e pb.end:
e delete bfrom AS: d <c <e<a

» check new neighbors (c,e) for intersection to the right of the sweep line; this
detects the intersection point of (c,e); report it and insert it as future event

e a.end:
e deleteafromAS:d<c<e

* NoO new neighbors

Bentley-Ottman sweep

e a.end:
e deleteafromAS:d<c<e

* NoO new neighbors

Bentley-Ottman sweep

* next event is the intersection of (c,e):
 fipceinAS:d<e<c

» check new neighbors (d,e) for intersection to the right of the sweep line; this
detects the intersection of (d,e); report it and insert it as future event

Bentley-Ottman sweep

e c.end:

e deletecinAS:d<e

* NO new neighbors

Bentley-Ottman sweep

e c.end:

e deletecinAS:d<e

* NO new neighbors

Bentley-Ottman sweep

* next event is the intersection of (d,e):

 fipd,e NAS:e<d

* NO new neighbors

Bentley-Ottman sweep

 d.end:

e deletedin AS: e

* NO new neighbors

Bentley-Ottman sweep

* this event is the end of d:

e deletedin AS: e

* NnO new neighbors

Bentley-Ottman sweep

e ec.end:

 delete e in AS;

* NnO new neighbors

Bentley-Ottman sweep

e ec.end:

 delete e in AS;

* NO new neighbors

Bentley-Ottman sweep

SL: sweep line

To implement these ideas, we'll maintain two data structures:
e Active structure AS:

« For any position of the sweep line SL, AS contains all active segments (segments that
start before SL and end after SL)

 AS is sorted by their y-coordinates of their intersection with SL
 Event list:

* For any position of SL, EventList contains segment endpoints to the right of SL, and also
the intersections to the right of SL of active segments that were/are neighbors in SL

 EventlList is sorted by x-coordinate

//Input: S is a set of n line segments in the plane
Algorithm Bentley-Ottman (S)

 initialize AS= {}
« sort 2n endpoints of all segments in S by x-coord and store them in EventList

« while EventList not empty:
* |et e be the next event from EventList; delete it from EventList

. if e is left endpoint of a segment [

« insert/in AS
« check if [intersects with [. prev and [. succ in AS to the right of the sweep line; if they do,
insert their intersection point in the EventList

. if e is the right endpoint of a segment [
« delete [from AS

« if e is the intersection of two segments
» search for the two segments in AS and flip their order...

Bentley-Ottman sweep

e For simplicity, we made some simplifying assumptions
* no vertical segments
* NO two segments intersect at their endpoints
* no three (or more) segments have a common intersection

« all endpoints (of segments) and all intersection points have different x-
coordinates

* N0 segments overlap
 These assumptions are not realistic for real data..

* But, they don't provide insight into the plane sweep technique, so we omit them

The detalls

e Active structure

 \What data structure should we use for AS?

e EventlList

* Note that we know a priori the 2n events corresponding to start and end-
points of segments, but the events corresponding to intersection points
are generated on the fly

 \What data structure should we use for EL?

Analysis

Running time
e AS
« Size:O(n)
« How many operations? O(n + k)

« Overalltime? O((n+ k) - lgn)

 FEventlist
« Size: O(n + k)
« How many operations? O(n + k)

« Overalltime? O((n+ k) - lgn)

Result: The intersections of a set of n segments in the plane can be found with
the Bentley-Ottman sweep algorithm in O((n + k) - 1g n) time.

