
Finding collinear points

The problem: Given a set of n points in the plane, determine if there exist three points that
are collinear.

We’ll assume that we can check whether any three given points are collinear in O(1) time (we’ll
come back with details on how to do this next week).

Brute force

Algorithm 1 (brute force)

• for all distinct triplets of points pi, pj , pk: if collinear return true

• (if you get here) return false

Questions:

• Argue that the algorithm is correct (can it miss any triplets?).

• What is the (worst-case) running time?

• How much space does it use?

1



Via sorting

Algorithm 2

• initialize array L = empty

• for all distinct pairs of points pi, pj

– compute their line equation (slope, intercept) and add it to an array L

• sort array L by (slope, intercept)

• traverse L and if you find any 3 consecutive identical (s,i) → collinear

Questions:

• Argue that the algorithm is correct.

• What is the (worst-case) running time?

• How much space does it use?

2



With a binary search tree

Algorithm 3

• initialize BBST = empty

• for all distinct pairs of points pi, pj

– compute their line equation (s, i)

– insert (s,i) in BBST; if when inserting you find that (s,i) is already in the tree, you
got three collinear points and return true

• (if you ever get here) return false

Questions:

• Argue that the algorithm is correct.

• What is the (worst-case) running time?

• How much space does it use?

• How does it compare to Algorithm 2?

3



With hashing

Algorithm 4

• initialize HashTable = empty

• for all distinct pairs of points pi, pj

– compute their line equation (s, i)

– insert (s,i) in HashTable; if when inserting you find that (s,i) is already in the HT,
you got three collinear points and return true

• (if you ever get here) return false

Questions:

• Argue that the algorithm is correc.

• What is the (worst-case) running time?

• How much space does it use?

• Hoes does it compare to Algorithm 3?

• Under what assumption on the input is Algorithm 4 faster than Algorithm 3?

4



A different way to sort

Algorithm 5

• for every point pi

– set array L = empty

– for every point pj (with pj ! = pi)

∗ compute slope of pj wrt to pi and add it to array L

– sort L

– traverse L and if you find two consecutive points that have same slope, they are
collinear with pi so return true

• (if you get here) return false

Questions:

• Argue that the algorithm is correct (can it miss any triplets?).

• What is the (worst-case) running time?

• How much space does it use?

5


