Finding collinear points

The problem: Given a set of n points in the plane, determine if there exist three points that
are collinear.

We’ll assume that we can check whether any three given points are collinear in O(1) time (we’ll
come back with details on how to do this next week).

Brute force

Algorithm 1 (brute force)
e for all distinct triplets of points p;, p;, pi: if collinear return true

e (if you get here) return false

Questions:

e Argue that the algorithm is correct (can it miss any triplets?).

e What is the (worst-case) running time?

e How much space does it use?



Via sorting

Algorithm 2
e initialize array L = empty
e for all distinct pairs of points p;, p;
— compute their line equation (slope, intercept) and add it to an array L
e sort array L by (slope, intercept)

e traverse L and if you find any 3 consecutive identical (s,i) — collinear

Questions:

e Argue that the algorithm is correct.

e What is the (worst-case) running time?

e How much space does it use?



With a binary search tree

Algorithm 3
e initialize BBST = empty
e for all distinct pairs of points p;, p;

— compute their line equation (s, i)

— insert (s,i) in BBST; if when inserting you find that (s,i) is already in the tree, you
got three collinear points and return true

e (if you ever get here) return false

Questions:

e Argue that the algorithm is correct.

e What is the (worst-case) running time?

e How much space does it use?

e How does it compare to Algorithm 27



With hashing

Algorithm 4
e initialize HashTable = empty
e for all distinct pairs of points p;, p;

— compute their line equation (s, i)

— insert (s,i) in HashTable; if when inserting you find that (s,i) is already in the HT,
you got three collinear points and return true

e (if you ever get here) return false

Questions:

e Argue that the algorithm is correc.

What is the (worst-case) running time?

How much space does it use?

Hoes does it compare to Algorithm 37

Under what assumption on the input is Algorithm 4 faster than Algorithm 37



A different way to sort

Algorithm 5
e for every point p;

— set array L = empty
— for every point p; (with p;! = p;)
* compute slope of p; wrt to p; and add it to array L
— sort L
— traverse L and if you find two consecutive points that have same slope, they are

collinear with p; so return true

e (if you get here) return false

Questions:

e Argue that the algorithm is correct (can it miss any triplets?).

e What is the (worst-case) running time?

e How much space does it use?



