

Finding collinear points

The problem: Given a set of n points in the plane, determine if there exist three points that are collinear.

We'll assume that we can check whether any three given points are collinear in $O(1)$ time (we'll come back with details on how to do this next week).

Brute force

Algorithm 1 (brute force)

- for all distinct triplets of points p_i, p_j, p_k : if collinear return true
- (if you get here) return false

Questions:

- Argue that the algorithm is correct (can it miss any triplets?).
- What is the (worst-case) running time?
- How much space does it use?

Via sorting

Algorithm 2

- initialize array L = empty
- for all distinct pairs of points p_i, p_j
 - compute their line equation (slope, intercept) and add it to an array L
- sort array L by (slope, intercept)
- traverse L and if you find any 3 consecutive identical (s,i) \rightarrow collinear

Questions:

- Argue that the algorithm is correct.
- What is the (worst-case) running time?
- How much space does it use?

With a binary search tree

Algorithm 3

- initialize BBST = empty
- for all distinct pairs of points p_i, p_j
 - compute their line equation (s, i)
 - insert (s, i) in BBST; if when inserting you find that (s, i) is already in the tree, you got three collinear points and return true
- (if you ever get here) return false

Questions:

- Argue that the algorithm is correct.
- What is the (worst-case) running time?
- How much space does it use?
- How does it compare to Algorithm 2?

With hashing

Algorithm 4

- initialize HashTable = empty
- for all distinct pairs of points p_i, p_j
 - compute their line equation (s, i)
 - insert (s, i) in HashTable; if when inserting you find that (s, i) is already in the HT, you got three collinear points and return true
- (if you ever get here) return false

Questions:

- Argue that the algorithm is correc.
- What is the (worst-case) running time?
- How much space does it use?
- Hoes does it compare to Algorithm 3?
- Under what assumption on the input is Algorithm 4 faster than Algorithm 3?

A different way to sort

Algorithm 5

- for every point p_i
 - set array L = empty
 - for every point p_j (with $p_j \neq p_i$)
 - * compute slope of p_j wrt to p_i and add it to array L
 - sort L
 - traverse L and if you find two consecutive points that have same slope, they are collinear with p_i so return true
- (if you get here) return false

Questions:

- Argue that the algorithm is correct (can it miss any triplets?).
- What is the (worst-case) running time?
- How much space does it use?